Connect Contact Control

Snap-Action Switches

S880 series
Snap-action switches with positive opening operation and self-cleaning contacts

Catalogue D80.en

Snap-action switches, $\mathbf{5 8 8 0}$ Series

The world's smallest snap-action switch with self-cleaning contacts and positive opening operation
Schaltbau subminiature S880 snap-action switches feature self-cleaning contacts and a positive opening function.
Minimum size in combination with maximum reliability make theV4 snapaction switch ideally suited for a host of applications: as a safety limit switch in medical engineering, as a limit switch for machine, door and system control or in driver's desks of locomotives.
Risks resulting from contact welding or spring failure are reduced by the
positive opening operation of the switch. Thanks to its snap mechanism it is highly resistant to shock and vibration.
Self-cleaning contacts (silver) and IP60/IP67 protection against dust, humidity and pollutants all contribute to the high reliability of the switch, even at low currents.
The switch is operated by a standard push button, but plain levers, roller levers and simulated roller levers are also available as auxiliary actuators.

Precision switch: High switching accuracy and high resistance to shock and vibration.

Miniature design: V4 subminiature switch, dimensions to DIN 41636, type B.

Wiping contacts: Continuous low contact resistance ensures high contact reliability over the entire design life of the switch.

Positive opening operation: Reliable breaking of the normally closed (NC) circuit even if the contacts have become welded together, in compliance with IEC 60947-5-1, Annex K.

Sealed to: IP40, IP60 or IP67 in accordance with IEC 60529

Contact finish: Silver or gold

Switch design and function

Competence

Applications

The success of a product is owed to its quality

The Schaltbau product line is clearly defined and keeps up with the technological requirements of today's markets. Behind every individual snap-action switch you will find decades of experience in engineering and manufacturing.
Snap-action switches are designed with a snap mechanism that allows extremely fast switching, practically regardless of the duration of actuation. This reproduces the operating position precisely, and controls the arc more efficiently.
In Schaltbau's snap-action switches the safety function can be seen with their transparent-green housing, they are known all over the world.

The S 880 is suitable for all safety-related applications, such as:

- Safety limit switch in medical engineering
- Limit switch for machine and system control, product engineering, elevator technology and material handling
- Safety limit switch in access locking systems, door and barrier control
- Control switch in heating, ventilating, and air-conditioning systems
- Switches for driver's cab of rail vehicles, control panels in cranes and on the bridges of ships.

		Example:	S880 W1G6	
Series				
S880	Series			
Contact configuration				
W	SPDT			
Degree of protection				
	Contacts	Terminals		
1	IP40	IP00		
2	IP60	IP00		
3	IP67	IP67		
5	IP67	IP00		
Terminals				
B	Leads, opposite actuator, L=500 mm			
F	PCB terminals, 180°			
G	Solder terminals, 180°			
H	Leads, on actuator side, $\mathrm{L}=500 \mathrm{~mm}$			
J	PCB terminals, $90^{\circ} \mathrm{LH}$-side			
P	PCB terminals, $90^{\circ} \mathrm{RH}$-side			
Contact finish				
4	Gold			
6	Silver			

Special design, optional

Note:
This product catalogue comprises only stock items. For some variants minimum quantities apply. Please ask for conditions.
Special variants:
Ifyou need a special variant of the switch, please do not hesitate to contact us. Maybe the type of switch you are looking for is among our many special designs. Ifnot, we can also supply customized designs. In this case minimum quantities apply.

Version IP40/00 with pushbutton (standard) and solder terminals 180°

Version IP40/00 with
short plain lever and
PCB terminals 180°

Version IP40/00 with simulated roller lever PCB terminals $90^{\circ} \mathrm{LH}$-side

Version IP60/00 with push button (standard) and solder terminals 180°

Version IP60/00 with short plain lever and solder terminals 180°

Version IP67/00 with long roller lever and solder terminals 180°

S880 W3B6t
Version IP67/67 with short roller lever and leads opposite actuator

Notes:
Data valid for new switches under laboratory conditions and at room temperature, unless otherwise mentioned.

[^0]- Dimension diagram S880 W1G6a

Circuit diagram

S880 W1G6a
S880 W1G6a SPDT
S880 W 1 G6a Contacts IP40
Terminals IPOO
S880 W1 G/6a Solder terminals
S880 W1G 6a Contact finish: silver
S880 W1G6 a Push button (standard)

Circuit diagram

- Dimension diagram S880 W2G6a / S880 W5G6a

- Dimension diagram S880 W3B6a

Circuit diagram
$1 \underset{\sim}{-4}$

- Dimensions S880 WxXx Pushbutton (standard)

- Dimensions $\mathbf{S 8 8 0} \mathbf{W x X x}$ Plain lever, short

- Dimensions S880 WxXx \mathbf{t} / S880 WxXx Roller lever, short/long

- Dimensions $\mathbf{S 8 8 0} \mathbf{W x X x}$ Simulated roller lever

Actuator position	Pushbutton (standard) \mathbb{a} Actuator travel X in mm
Free position	9.10 ± 0.15
Operating position	8.40 ± 0.20
Release position	8.55 ± 0.20
Total positive opening travel	7.35
Total travel position	7.15
Movement differential (between operating and release position)	0.15 (typical)

Note: To ensure the proper working of the positive opening operation it is necessary to depress the plunger to the point of total positive opening travel. However, it must not be pushed beyond total travel position. Data is valid for new switches.

Actuator position	Plain lever \mathbf{k} Travel $\mathbb{\text { in }} \mathbf{~ m m}$
Length of lever	10.70
Free position	13.70 ± 0.80
Operating position	11.60 ± 0.80
Release position	12.00 ± 0.80
Total positive opening travel	7.50
Total travel position	7.30
Movement differential (between operating and release position)	0.40 (typical)

Note: To ensure the proper working of the positive opening operation it is necessary to depress the plunger to the point of total positive opening travel. However, it must not be pushed beyond total travel position. Data is valid for new switches.

Actuator position	Roller lever t Travel X in mm	Roller lever r Travel X in mm
Length of lever Y	8.25	10.70
Free position	18.30 ± 0.80	19.00 ± 0.80
Operating position	16.50 ± 0.80	16.80 ± 0.80
Release position	16.90 ± 0.80	17.20 ± 0.80
Total positive opening travel	12.75	12.40
Total travel position	12.55	12.20
Movement differential (between operating and release position)	0.40 (typical)	$\begin{gathered} 0.40 \\ \text { (typical) } \end{gathered}$

Note: To ensure the proper working of the positive opening operation it is necessary to depress the plunger to the point of total positive opening travel. However, it must not be pushed beyond total travel position. Data is valid for new switches.

Actuator position	Simulated roller lever \mathbf{v} * Actuator travel X in mm
Length of lever Y	12.65
Free position	16.40 ± 0.80
Operating position	14.40 ± 0.80
Release position	14.80 ± 0.80
Total positive opening travel	10.00
Total travel position	9.80
Movement differential (between operating and release position)	$\begin{gathered} 0.40 \\ \text { (typical) } \end{gathered}$

©
Note: To ensure the proper working of the positive opening operation it is necessary to depress the plunger to the point of total positive opening travel. However, it must not be pushed beyond total travel position. Data is valid for new switches.

- Dimensions S880 WxXx Z Plain lever, short

- Dimensions S880 WxXx Z / S880 WxXx Z Roller lever, short/long

- Dimensions $5880 \mathrm{WxXx} \mathbf{\mathrm { V }}$ Simulated roller lever

Actuator position (rear-mounted \bar{Z})	Plain lever $\overline{\mathbf{k}}$ Travel X in $\mathbf{~ m m}$
Length of lever $\mathbf{~}$	6.20
Free position	11.00 ± 0.70
Operating position	9.90 ± 0.70
Release position	10.15 ± 0.70
Total positive opening travel	8.20
Total travel position	7.90
Movement differential (between operating and release position)	0.25 (typical)

Note: To ensure the proper working of the positive opening operation it is necessary to depress the plunger to the point of total positive opening travel. However, it must not be pushed beyond total travel position. Data is valid for new switches.

Actuator position (rear-mounted [Z)	Roller lever t Travel X in mm	Roller lever r Travel X in mm
Length of lever Y	4.00	6.60
Free position	16.00 ± 0.70	16.30
Operating position	15.00 ± 070	15.15
Release position	15.25 ± 0.70	15.40
Total positive opening travel	13.30	13.40
Total travel position	13.10	13.10
Movement differential (between operating and release position)	$\begin{gathered} 0.25 \\ \text { (typical) } \end{gathered}$	$\begin{gathered} 0.25 \\ \text { (typical) } \end{gathered}$

©
Note: To ensure the proper working of the positive opening operation it is necessary to depress the plunger to the point of total positive opening travel. However, it must not be pushed beyond total travel position. Data is valid for new switches.

Actuator position (rear-mounted \bar{Z})	Simulated roller leverV Actuator travel \mathbb{X} in mm Length of lever $\mathbf{~}$
Free position	8.2
Operating position	14.00 ± 0.70
Release position	12.60 ± 0.70
Total positive opening travel	12.90 ± 0.70
Total travel position	10.50
Movement differential (between operating and releaseposition)	10.30

Note: To ensure the proper working of the positive opening operation it is necessary to depress the plunger to the point of total positive opening travel. However, it must not be pushed beyond total travel position.
Data is valid for new switches.

- Dimensions $\mathbf{S 8 8 0} \mathbf{W x} \mathbf{B}_{\mathrm{xx}}$ Leads opposite actuator

- Dimensions $\mathbf{S 8 8 0} \mathbf{W x} \boldsymbol{F}_{\mathbf{x x}}$ PCB terminals, straight

(i) Note

Hand soldering:

- Soldering apparatus: Hand-held soldering iron
- Solder: Flux-filled solder wire, leadfree
- Temperature/duration: $350^{\circ} \mathrm{C} ; 3 \mathrm{~s}^{*}$ max.

Selective soldering:

- Soldering apparatus: Selective soldering station
- Solder: Leadfree solder for selective and wave soldering
- Temperature/duration: $300^{\circ} \mathrm{C} ; 1.5 \mathrm{~s} ; 3 \mathrm{~mm}$ wave distance; Flux time 0.2 s
Wave soldering:
- Soldering apparatus: Wave soldering station, 1 wave (Wörthmann wave)
- Solder: Leadfree solder for selective and wave soldering
- Temperature/duration: $261{ }^{\circ} \mathrm{C} ; 3 \mathrm{~s}$; wave width 66 mm ;
conveyor speed $1.3 \mathrm{~m} / \mathrm{min}$; preheating approx. 70 s at 110 .. $130^{\circ} \mathrm{C}$ (typical)
* PCB; 1.6 mm ; through-contacted
- Dimensions $\mathrm{S}_{8} 80 \mathrm{~W}_{\mathrm{x}} \mathbf{G}_{\mathrm{xx}}$ Solder terminals, straight

(i) Note:

Terminals: Leads AWG 24
Length: 500 mm
Connection:

Terminal	Colour
2	grey
4	blue
1	black

- Dimensions S880 Wx $\boldsymbol{H}_{\mathbf{x x}}$ Leads on actuator side

- Dimensions $\mathbf{S 8 8 0} \mathbf{W} \times \mathrm{Jxx} \mathbf{T}$ PCB terminals, $90^{\circ} \mathrm{LH}$-side (J$)$, with locating pins (\mathbf{T})

(i) Note:

Terminals: Leads AWG 24
Length: 500 mm
Connection:

Terminal	Colour
2	grey
4	blue
1	black

Hand soldering:

- Soldering apparatus: Hand-held soldering iron
- Solder: Flux-filled solder wire, leadfree
- Temperature/duration: $350^{\circ} \mathrm{C} ; 45^{*}$ max.

Selective soldering:

- Soldering apparatus: Selective soldering station
- Solder: Leadfree solder for selective and wave soldering
- Temperature/duration: $300^{\circ} \mathrm{C} ; 1.5 \mathrm{~s} ; 3 \mathrm{~mm}$ wave distance; Fluxtime 0.2s
Wave soldering:
- Soldering apparatus: Wave soldering station, 1 wave (Wörthmann wave)
- Solder: Leadfree solder for selective and wave soldering
- Temperature/duration: $261^{\circ} \mathrm{C} ; 3$ s; wave width 66 mm ; conveyor speed $1.3 \mathrm{~m} / \mathrm{min} ;$ pre-heating approx. 70 s at $110 . . .130^{\circ} \mathrm{C}$ (typical)
* PCB; 1.6mm;through-contacted

Standards

Switch series based on the following standards:

- IIEC 60947-1: Low-voltage switchgear and controlgear, Part 1: General rules
- IEC 60947-5-1, Annex K: Special requirements for control switches with direct opening action
- UL508: Industrial control equipment
- IEC 60529: Degrees of protection provided by enclosures (IP Code)
- UL 94V-0: Flammability Standard
- Dimensions according to DIN 41636-3, type B
- DIN EN ISO 13849-1: Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design
- IEC 60068-2-6: Environmental testing - Part 2-6: Tests Test Fc: Vibration (sinusoidal)
- IEC 60068-2-27: Environmental testing - Part 2-27: Tests Test Ea and guidance: Shock

Mounting Mechanical fastening

Ganging (lateral mounting)

- through the two transversal holes in the body of the switch by means of a collar screw or threaded bolt.
Torque 0.2 Nm max.
- Alternatively, DUO-Clips or retaining rings can be used.

Mounting on PCB

- Mounting holes for PCB terminals, 180°

S880 Wx F $x x x$
PCB terminals 180°

- Mounting holes for PCB terminals, $90^{\circ} \mathrm{LH}$-side

S880 Wx Jxxx PCB terminals 90° with positioning pins

Electrical rating

Electrical life is a measure of contact life depending on external conditions such as:

- rated voltage and rated current
- type of load (inductive / capacitive / resistive)
- switching rate (operations/minute)
- arc-extinguishing rate / capacity (especially in DC applications)
- pollution, e.g. dust, harmful substances, noxious gases and vapours

Note:

- The curve is based on the results of electrical life tests carried out under laboratory conditions. The values shown in the diagram are representative.
- We reserve the right for changes which serve the technical progress.

When to use a roller lever?

- Snap-action switches are designed for actuation with and without a roller lever.
- A roller lever is required if the direction of actuation deviates more than $\pm 15^{\circ}$ from the plunger axis.
- Switch with roller lever actuated by trigger cam

Mounting and safety instructions, environmental conditions

Mounting instructions:

- Snap-action switches should be mounted by qualified professional staff only.
- Observe the required clearance and creepage distances. This is also applicable for assembled leads.
- It is necessary to use insulating plates when ganging or mounting switches on uninsulated surfaces.
- The switches can be mounted in any orientation.
- When mounting the switches make sure to use 2 fastening elements (e.g. screws).
- Only use adequate fastening elements such as cylinder head or collar screws or DUO-clips, including washers. When fastening make sure not to exceed the maximum tightening torque.
- Avoid tilting the screw when mounting to prevent mechanical tension on the housing.
- The actuator may not be pre-tensioned when in the free position. When actuated, the actuator should travel well beyond the operating position, for at least 50% of the predefined overtravel, all the way to total travel position.
- To ensure the proper function of the positive opening operation it is necessary to depress the plunger to the total travel position.
- To prevent mechanical destruction of the switch, make sure that actuation of the switch does not exceed the specified total travel position. Avoid using the switch as a mechanical end stop..
- High-impact actuation of the switch can have a negative effect on its mechanical life.
- When securing stripped wire ends in the terminal clamp, make sure the wire insulation is flush with the clamp.
- Prevent a transfer of forces to the switch terminals, and ensure that connected leads have a functioning strain relief.

Non-permissible environmental conditions:

- Cleaning agents, adhesives, solvents, or screw-retaining varnish must be compatible with polycarbonate. Never use polycarbonate incompatible chemicals.
- Using chemicals which are not compatible with polycarbonate can result in cracks, deformation, breakage and dissolution of the housing or complete destruction of the switch.
- Switches sealed to IP 67 are immersion protected. That means there is no ingress of water in a harmful quantity when a new switch (which is not operated) is immersed in water (1 m depth) for 30 minutes. This degree of protection cannot be warranted when polycarbonate incompatible chemicals are used.

Safety instructions:

- In case of moisture of any kind or impact of aggressive substances, chemicals, solvents or acids appropriate protective measures must be taken by the user in accordance with IEC 60364-4-41:2005, modified (Low-voltage electrical installations - Part 4-41: Protection for safety - Protection against electric shock). One such measure is the limitation of the voltage range.
- Be sure to make regular visual inspections.
- Improper handling of the switch, e.g. when hitting the floor with some impact, can result in breakage, visible cracks and deformation.
- The switch suitability has to be confirmed by the customer for the specific application, and under application conditions.
- For applications with both a high ambient temperature of $>40^{\circ} \mathrm{C}$ and a high $I_{\text {th }}$ current, a correction factor i.a.w. DIN EN 60204-1 Tab. 6 and Table D. 1 must be applied for the wire and current.

Defective parts must be replaced immediately!

For a detailed list of all safety instructions see here:
\square schaltbau.info/download2en!

Schaltbau GmbH

For detailed information on our products and services visit our website -
or give us a call!

Schaltbau GmbH Hollerithstrasse 5 81829 Munich Germany

Phone $\quad+498993005-0$
Fax $\quad+498993005-350$
Internet www.schaltbau.com
e-Mail contact@schaltbau.de

IRIS.
 Certification

The production facilities of Schaltbau GmbH have been IRIS certified since 2008.

Certified to DIN EN ISO 14001 since 2002. For the most recent certificate visit our website.

Certified to DIN EN ISO 900 since 1994. For the most recent certificate visit our website.

Electrical Components and Systems for Railway Engineering and Industrial Applications

Connectors

Snap-action switches

Contactors Emergency disconnect switches

Connectors manufactured to industry standards
Connectors to suit the special requirements of communications engineering (MIL connectors)

Charging connectors for battery-powered machines and systems

Connectors for railway engineering, including UIC connectors

Special connectors to suit customer requirements

Snap-action switches with positive opening operation
Snap-action switches with self-cleaning contacts
Snap-action switch made of robust polyetherimide (PEI)
Snap-action switch with two galvanically isolated contact bridges

Special switches to suit customer requirements
Single and multi-pole DC contactors
High-voltage AC/DC contactors
Contactors for battery powered vehicles and power supplies
Contactors for railway applications
Terminal bolts and fuse holders
DC emergency disconnect switches
Special contactors to suit customer requirements

Electrics for rolling stock
Equipment for driver's cab
Equipment for passenger use
High-voltage switchgear
High-voltage heaters
High-voltage roof equipment
Equipment for electric brakes
Design and engineering of train electrics
to customer requirements

[^0]: *1 Observe safety instructionsp. 11 *2 Data for gold contacts upon request
 *3 General Purpose *4 Measured next to push button

