SCHALTBAU

Connect Contact Control

Contactors

C310 Series
1 pole
AC and bi-directional DC NO contactors for 150 A, 300 A and 500 A

Catalogue C310.en

C310-1 pole AC and bi-directional DC NO contractors

Compact single-pole NO contractors for AC and DC up to 1,500 volt

 rated insulation voltage. Making current up to 2,500 amps; conventional thermal current up to 500 amps ; short-time current up to 3,000 amps.The bi-directional DC contactors switch high powers in a small space. With a making capacity of up to $2,500 \mathrm{amps}$, the compact switchgear is suitable for applications with high inrush current or high capacities. All versions can continuously conduct up to 500 amps . In the event of a short circuit, $3,000 \mathrm{amps}$, can even flow for one second without the contacts welding. The contactor therefore maintains its full function in order to disconnect
high power ranges if necessary up to 500 amps and up to 1,500 volts irrespective of the current direction. This full bi-directionality is important for systems with a charging and discharging process, such as in battery networks or electric vehicles. Other typical application areas are the DC circuit in inverters, combiner boxes in photovoltaic systems or the management of battery storage systems.

Features

Compact dimensions - high rated insulation voltage U_{i} up to 1,500 volts
Small dimensions - great performance! Nevertheless, all the air gaps in the contact area have been generously dimensioned. The rated insulation voltage is 1,500 volts.
The arc chamber of the C310 is made of plastic. This is efficient and saves weight.

High making capacity I_{cm} of up to $2,500 \mathrm{amps}$
The C310 can switch on a current of up to $2,500 \mathrm{amps}$ (monostable design in a horizontal installation position; $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$). A PWM controller regulates the coil current and ensures lowbounce switch on as well as a low holding power. High contact forces and optimised silver contacts both contribute to the excellent making capacity.

High thermal continuous current $\mathrm{t}_{\text {th }}$ of up to 500 amps
All versions of the C 310 can continuously carry up to 500 amps . (Cross-section of the connections: $185 \mathrm{~mm}^{2}$, maximum ambient temperature: $85^{\circ} \mathrm{C}$; terminal heating: +65 Kelvin). The value is achieved through very high contact forces.

High short-time withstand current rating I_{cw} of up to $3,000 \mathrm{amps}$
The C310 can carry a current of up to $3,000 \mathrm{amps}$ for one second without the contacts welding. This is enough time for the short circuit fuse to trip. The short-time withstand current rating is based on high contact forces and optimised silver contacts.

Full bi-directionality - reliable disconnection of high performances
All versions of the C310 can reliably disconnect high currents and voltages, irrespective of the current direction. These properties are achieved in the A and K versions through the special arrangement of blowout magnets and arcing chambers, high contact forces and generously dimensioned clearances in the contact ara.

Auxiliary switch with mirror contact function

Series C310 contactors are equipped with auxiliary switches with mirror contact function in accordance with DIN EN IEC 60947-4-1, annex F. Mirror contacts are required for the feedback circuits in safety controls. Mirror contacts ensure that the NC contact of the auxiliary contact is not closed at the same time as the NO main contact.

Contractors meet requirements for industrial applications to:

IEC 60947-4-1
Low-voltage switchgear and controlgear - Part 4-1: Contractors and motor starters - Electromechanical contactor and motor starters.

ISO 16750-3

Road vehicles - Environmental conditions and testing for electrical and electronic equipment - Part 3: Mechanical loads

UL 60947-4-1

Low-Voltage Switchgear and Controlgear - Part 4-1: Contractors and Motor-Starters - Electromechanical Contactor and MotorStarters.

GB/T 14048.4

Low-Voltage Switchgear and Controlgear - Part 4-1: Contractors and Motor-Starters - Electromechanical Contactors and MotorStarters.

Reliable, robust and economical

Contractors of the C310 series are designed for continuous currents of $150 \mathrm{amps}, 300 \mathrm{amps}$ and 500 amps . The switchgear has both high making and breaking capacities, and a high short-time withstand current. This ensures high operational safety.
An integrated electronic coil control ensures a constant and reliable switching behaviour independent of the ambient temperature. In addition, the energy consumption and associated heat development of the monostable design is noticeably reduced when switched on. Inherent to its design, the bistable version consumes no power in either end positions.

Dependent on the application, high requirements can be placed on electromechanical components. The new DC contractors are highly resistant to shock and vibration loads and meet the high requirements of ISO 16750.

Ordering key

150	$I_{\text {th }}=150 \mathrm{~A}$
300	$\mathrm{I}_{\text {th }}=300 \mathrm{~A}$
500	$\mathrm{I}_{\text {th }}=500 \mathrm{~A}$

Coil voltage

	Monostable	Bistable
24	$\mathrm{U}_{\mathrm{s}}=12 \ldots 24 \mathrm{VDC}^{*}$	$\mathrm{U}_{\mathrm{s}}=24 \mathrm{VDC}$
48	$\mathrm{U}_{\mathrm{s}}=48 \mathrm{VDC} C^{* *}$	$\mathrm{U}_{\mathrm{s}}=48 \mathrm{VDC}$

* Operating range 9.5 ... 36 VDC ** Operating range 33.6... 60 VD

Accessories

C310-TP
Deflection shield, C310A/... only

Note:

* with mirror contact function according to IEC 60947-4-1, annex F
Presented in this catalogue are only stock items which can be supplied in short delivery time. For some variants minimum quantities apply. Please do not hesitate to ask for the conditions.
Special variants:
If you need a special variant of the contactor, please do not hesitate to contact us. Maybe the type of contactor you are looking for is among our many special designs. If not, we can also supply customized designs. In this case, however, minimum order quantities apply.

Application

Thanks to many years of experience and competence developing electromechanical switchgear and the mastering DC arcs, Schaltbau has developed an innovative solution with new DC contactor that significantly simplifies applications with DC switching technology. Since the C310 series safely controls both current directions, the contractors are ideal for all applications involving energy recovery.
A typical example here is energy storage, where batteries are
repeatedly charged and discharged. Other application areas for the C310 series are regenerative systems, DC charging stations and photovoltaic systems. In battery powered and hybrid vehicles, the devices can be used directly as the main contactor in the battery disconnect unit (BDU). This reliably ensures the disconnection of both poles from the vehicle in the event of a short circuit.

E-mobility:

- Electrical vehicles, hybrid vehicles and trolley busses
- DC charging station
- Battery test systems

Photovoltaics

- DC switching in central inverters
- Electrical cabinet (combiner boxes)
- Home energy storage systems

Battery energy storage systems

- Grid stabilization and battery energy storages
- Regenerative systems in industrial plants
- Battery management systems
- Home energy storages

C310K/- 1 pole NO contactor
AC or bi-directional DC

- Large arc chamber for significantly higher breaking capacity
- Rated insulation voltage U_{i} up to $1,500 \mathrm{~V}$
- Rated short-circuit making capacity I_{cm} up to $2,500 \mathrm{~A}$
- Conventional free air thermal current $I_{\text {th }}$ up to 500 A
- Rated short-time withstand current I_{cw} up to $3,000 \mathrm{~A}$

Arc chamber main contact system Highly efficient plastic arc chamber with permanent magnetic blowing

Aux. switch
S880, SPDT, flat tabs $2.8 \times 0.5 \mathrm{~mm}$

Coil terminal
Flat tabs $6.3 \times 0.8 \mathrm{~mm}$

Main contact terminals

Series	Material ®
C310K/150 ...	Copper
C310K/300 ...	Copper
C310K/500 ...	Copper, silver plated
Series	Thickness ¢
C310K/150 ...	3 mm
C310K/300 ...	5 mm
C310K/500 ...	5 mm
Series	Diameter (0)
C310K/150 ...	$\emptyset 9 \mathrm{~mm}$
C310K/300 ...	$\varnothing 11 \mathrm{~mm}$
C310K/500 ...	$\varnothing 11 \mathrm{~mm}$

Circuit diagram

	Monostable*	Bistable **	
C310K/... Main contacts $1 \times$ NO Number of auxiliary switches none		$\underset{A}{\square /-}-\\|_{2}^{\mathrm{A} 1+/-}$	
C310K/... Main contacts 1x NO Number of auxiliary switches*** 1x SPDT S880 W1R6 k			

C310K/...

Main contacts

1x NO
Number of auxiliary switches***

Dimension diagram C310K/...

Specifications Version «K» for $U_{e}=1,500$ V DC

Series	C310K/150	C310K/300	C310K/500
Type of voltage Main contacts, configuration	DC, bi-directional / AC, $f \leq 60 \mathrm{~Hz}$ 1x NO		
Electrical data according to IEC/UL 60947-4-1, GB/T 14048.4-2010			
Rated operational voltage $U_{\text {e }}$	1,000 V @ PD3 / 1,500 V @ PD2		
Rated insulation voltage U_{i}	1,000 V @ PD3 / 1,500 V @ PD2		
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	8 kV		
Pollution degree / Overvoltage category	PD2, PD3: see U_{e} and $\mathrm{U}_{\mathrm{i}} /$ OV3		
$\begin{array}{ll}\text { Conventional free air thermal current } l_{\text {th }} & T_{a}=40^{\circ} \mathrm{C} \text { (cross section) } \\ & \mathrm{T}_{\mathrm{a}}=70^{\circ} \mathrm{C} \text { (cross section) }\end{array}$	$150 \mathrm{~A}\left(50 \mathrm{~mm}^{2}\right)$	$300 \mathrm{~A}\left(185 \mathrm{~mm}{ }^{2}\right)$	$\begin{aligned} & 500 \mathrm{~A}\left(2 \times 150 \mathrm{~mm}^{2}\right) \\ & 400 \mathrm{~A}\left(240 \mathrm{~mm}^{2}\right) \end{aligned}$
	3 W	11 W	30 W
Pole impedance typ.	$120 \mu \Omega$	$120 \mu \Omega$	$120 \mu \Omega$
Utilization category AC-1* $U_{\mathrm{e}}=750 \mathrm{~V}$ Rated operational current I_{e} IEC 60947-4-1	60 A	60 A	60 A
Utilization category DC-1* $\mathrm{U}_{\mathrm{e}}=750 \mathrm{~V}$ Rated operational current I_{e} IEC 60947-4-1, GB/T 14048.4-2010	60 A	60 A	60 A
Utilization category DC-1* / DC general use $U_{e}=600 \mathrm{~V}$ Rated operational current $I_{\text {e }}$ UL 60947-4-1	50 A	50 A	50 A
Frequency of operation (operations per hour) $\mathrm{l}_{\mathrm{e}} \quad$ AC-1 \& DC-1	$360 \mathrm{~h}^{-1}$	$360 \mathrm{~h}^{-1}$	$360 \mathrm{~h}^{-1}$
Rated short-time withstand current $\mathrm{I}_{\mathrm{cw}} \quad \mathrm{t}=1 \mathrm{~s}$		$3,000 \mathrm{~A}$	
Short circuit protection device for contactors (w/o thermal overload relay) $U_{e}=900 \mathrm{VDC}$, lprosp $=10 \mathrm{kA}$, coord. type "2", fuse: SIBA SQB-DC 2 (aR Type)	200 A	315 A	$2 \times 250 \mathrm{~A}$ (parallel)
Additional electrical ratings of main circuit			
$\begin{array}{lr}\text { Conventional free air thermal current } \mathrm{l}_{\text {th }} & \mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C} \text { (cross section) } \\ \text { Terminal heating }\end{array}$	$\begin{gathered} 200 \mathrm{~A}\left(50 \mathrm{~mm}^{2}\right) \\ 45 \mathrm{~K} \end{gathered}$	$\begin{gathered} 350 \mathrm{~A}\left(120 \mathrm{~mm}^{2}\right) \\ 45 \mathrm{~K} \end{gathered}$	$\begin{gathered} 500 \mathrm{~A}\left(185 \mathrm{~mm}^{2}\right) \\ 65 \mathrm{~K} \end{gathered}$
Power dissipation per pole $1_{\text {th }}$ @ $40^{\circ} \mathrm{C}$, typ.	5 W	15 W	30 W
Pole impedance typ.	$125 \mu \Omega$	$120 \mu \Omega$	$120 \mu \Omega$
Rated short-circuit making capacity $\mathrm{I}_{\mathrm{cm}}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$ For mono- or bistable drive (depending on mounting position)	monostable: horizontal: $2,500 \mathrm{~A}$, vertical: $2,000 \mathrm{~A}$ bistable: horizontal: 750 A , vertical: 750 A		
Breaking capacity $\mathrm{L}_{\max }=0.25 \mathrm{mH}$, other values on request Single contact $U_{e}=1.500 \mathrm{~V} / \mathrm{I}_{\mathrm{e}}=300 \mathrm{~A}$ $\mathrm{U}_{\mathrm{e}}=1.000 \mathrm{~V} / \mathrm{I}_{\mathrm{e}}=500 \mathrm{~A}$ $U_{e}=900 \mathrm{~V} / I_{e}=700 \mathrm{~A}$ $U_{e}=750 \mathrm{~V} / \mathrm{I}_{\mathrm{e}}=1.000 \mathrm{~A}$ $\mathrm{U}_{\mathrm{e}}=500 \mathrm{~V} / \mathrm{I}_{\mathrm{e}}=1.500 \mathrm{~A}$	10 operations 20 operations 25 operations 10 operations 15 operations		
Double contact circuit $\begin{aligned} & U_{\mathrm{e}}=1.500 \mathrm{~V} / \mathrm{I}_{\mathrm{e}}=1.000 \mathrm{~A} \\ & \mathrm{U}_{\mathrm{e}}=1.000 \mathrm{~V} / \mathrm{I}_{\mathrm{e}}=1.700 \mathrm{~A} \end{aligned}$	10 operations 15 operations		
Electrical endurance	$6,000$ operations @ DC (L/R $=1 \mathrm{~ms}), \mathrm{AC}(\cos \varphi=0.8): 750 \mathrm{~V} / 60 \mathrm{~A}$		
Main contacts			
Contact material	AgSnO_{2}	AgSnO_{2}	AgSnO_{2}
Terminals	M8	M10	M10
Torque	4.8 ... 6 Nm	$8 \ldots 10 \mathrm{Nm}$	$8 . . .10 \mathrm{Nm}$
Auxiliary contacts			
Number, configuration / Contact material	2x S880 W1R6 k max. / Silver		
Making / Breaking capacity S880	AC-15: $230 \mathrm{VAC} / 1.0 \mathrm{~A}$ DC-13:60VDC / 0.5		
Minimum voltage / Current	$5 \mathrm{~V} / 5 \mathrm{~mA}$		
Terminals	Flat quick connect $2.8 \times 0.5 \mathrm{~mm}$		
Magnetic drive (monostable)			
Rated control supply voltage U_{s} (Operating range) Pollution degree / Overvoltage category	$\begin{gathered} 12 \ldots 24 \mathrm{VDC}(9.5 \ldots 36 \mathrm{VDC}) / 48 \mathrm{VDC}(33.6 \ldots 60 \mathrm{VDC}) \\ \mathrm{PD3} / \mathrm{OV} 2 \end{gathered}$		
Coil power dissipation, max. $\left(\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}\right)$ Pull-In power (0.2 s) / Holding power	$50 \mathrm{~W}(24 \mathrm{~V}) / 2.6 \mathrm{~W}$		
Frequency of operation (operations per hour, no load) $\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$	3,600 $\mathrm{h}^{-1} / 1,800 \mathrm{~h}{ }^{-1}$		
Pull-in time ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) / Drop-off time ($\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{\mathrm{s}}$) Coil suppression (integrated) / Coil terminal	$\begin{gathered} 33 \mathrm{~ms} / 25 \mathrm{~ms} \\ \text { Suppressor diode / Flat tap } 6.3 \times 0.8 \mathrm{~mm} \end{gathered}$		
Magnetic drive (bistable)			
Rated control supply voltage U_{s} Pollution degree / Overvoltage category Coil tolerance	24 / 48 V DC @ ON time 0.1 ... 0.5 s max. PD3 / OV2 $-30 \% \ldots+25 \% U_{s}$		
Coil power dissipation, max. ($\mathrm{Ta}=20^{\circ} \mathrm{C} / \mathrm{U}_{5}$)	35 W		
Frequency of operation (operations per hour, no load) $\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$	1,800 $\mathrm{h}^{-1} / 1,800 \mathrm{~h}^{-1}$		
Pull-in time $\left(T_{a}=20^{\circ} \mathrm{C} / \mathrm{U}_{s}\right) /$ Drop-off time $\left(\mathrm{T}_{\mathrm{a}}=20^{\circ} \mathrm{C} / \mathrm{U}_{s}\right) \quad$ typ. Coil suppression (integrated) / Coil terminal	$\begin{gathered} 20 \mathrm{~ms} / 13 \mathrm{~ms} \\ \text { Suppressor diode / Flat tap } 6.3 \times 0.8 \mathrm{~mm} \end{gathered}$		
Mounting position	vertical / horizontal (mounting see page 11)		
Degree of protection IEC 60529	IP00		
Mechanical endurance main contacts monostable / bistableauxiliary contacts	2,000,000 operations / 100,000 operations 1,000,000 operations		
Shock / Vibration IEC 61373 / ISO 16750-3	Category 1, Class B / Class C		
Temperatures Operating temperature / Storage temperature Altitude / Humidity (EN 50125-1)	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ $<4,500 \mathrm{~m} @ U_{i}=1,000 \mathrm{~V} /<3,500 \mathrm{~m} @ U_{i}=1,500 \mathrm{~V}$ above sea level / $<75 \%$ on an annual average		
Weight	1.24 kg	1.31 kg	1.35 kg
			(3) SCHALTBA

[^0]

C310A/- 1 pole NO contactor AC or bi-directional DC

- Rated insulation voltage U_{i} up to $1,500 \mathrm{~V}$, version with small arc chamber
- Rated short-circuit making capacity I_{cm} up to $2,500 \mathrm{~A}$
- Conventional free air thermal current $\mathrm{I}_{\text {th }}$ up to 500 A
- Rated short-time withstand current I_{cw} up to $3,000 \mathrm{~A}$

Arc chamber cover		
Reduces the distance to live, metallic or grounded parts		
Arc chamber main contact system		
Highly efficient plastic arc chamber with permanent magnetic blowing		
Aux. switch		
S880, SPDT, flat tabs $2.8 \times 0.5 \mathrm{~mm}$		
Coil terminal		
Main contact terminals		
Series	Material	(®)
$\begin{aligned} & \text { C310A/150 ... } \\ & \text { C310A/300 ... } \\ & \text { C310A/500 ... } \end{aligned}$	Copper	
	. Copper	
	. Copper, silv	
Series	Thickness	(\dagger
$\begin{aligned} & \hline \text { C310A/150 ... } \\ & \text { C310A/300 ... } \\ & \text { C310A/500 ... } \end{aligned}$. 3 mm	
	.. 5 mm	
	. 5 mm	
Series	Diameter	(0)
C310A/150 ..	. $\varnothing 9 \mathrm{~mm}$	
C310A/300 ..	. $\varnothing 11 \mathrm{~mm}$	
C310A/500 ..	. $\varnothing 11 \mathrm{~mm}$	

Circuit diagram

	Monostable*	Bistable **	
C310A/... Main contacts 1xNO Number of auxiliary switches none		$\underset{A}{\square /-1+-}-\\|_{2}^{1}$	
C310A/... Main contacts 1x NO Number of auxiliary switches*** 1x SPDT S880 W1R6 k			

C310A/...

Main contacts
1x NO
Number of auxiliary switches***

(i) ${ }^{*}$ Coil suppression integrated, additional circuit is not allowed!
** Switching by reversing the polarity, voltage pulse 0.5 sec max.
*** Auxiliary switches with mirror contact function according to EN 60947-4-1, annex F

Dimension diagram C310A/...

Specifications Version «A» for $U_{e}=1,500$ V DC

C310S/- 1 pole NO contactor
AC or bi-directional DC

- Rated insulation voltage U_{i} up to $1,500 \mathrm{~V}$, version without arc chamber
- Rated short-circuit making capacity I_{cm} up to $2,500 \mathrm{~A}$
- Conventional free air thermal current $I_{t h}$ up to 500 A
- Rated short-time withstand current I_{cw} up to $3,000 \mathrm{~A}$

Switching chamber Main contact system w/o arc chamber

Aux. switch
S880, SPDT, flat tabs $2.8 \times 0.5 \mathrm{~mm}$

Coil terminal
Flat tabs $6.3 \times 0.8 \mathrm{~mm}$

Main contact terminals

Series	Main contact terminals
	Material ®
C310S/150 ...	Copper
C310S/300 ...	Copper
C310S/500 ...	Copper, silver plated
Series	Thickness (\dagger
C310S/150 ...	3 mm
C310S/300 ...	5 mm
C310S/500 ...	5 mm
Series	Diameter (0)
C310S/150 ...	$\emptyset 9 \mathrm{~mm}$
C310S/300 ...	$\varnothing 11 \mathrm{~mm}$
C310S/500 ...	$\varnothing 11 \mathrm{~mm}$

Circuit diagram

	Monostable*	Bistable **
```C310S/... Main contacts 1xNO Number of auxiliary switches none```		$\underset{A /-}{A 1+/-}-\left.\right\|_{2} ^{1}$
C310S/...   Main contacts   1x NO   Number of auxiliary switches***   1x SPDT S880 W1R6 k		

C310S/...
Main contacts
1 xNO
Number of auxiliary switches***


(i) * Coil suppression integrated, additional circuit is not allowed!
** Switching by reversing the polarity, voltage pulse 0.5 sec max.
*** Auxiliary switches with mirror contact function according to EN 60947-4-1, annex F

## Dimension diagram C310S/...



## Specifications Version «S》 for $\mathrm{U}_{\mathrm{e}}=60 \mathrm{VDC}$



- C310K/...
with large arc chamber
Minimum distance at max. load current

(i)

For the C310K/150, C310K/300 and C310K/500 series there is a minimum distance of 20 mm to magnetically active, live or earthed parts.

- C310A/...
with arc chamber cover

(i)

The extinguishing chamber cover is part of the standard scope of delivery for the C310A/150, C310A/300 and C310A/500 series.

- C310A/... w/o arc chamber cover

(i)

It is permissible to use the C310A/150, C310A/300 and C310A/500 series without arc chamber cover, taking into account additional clearance dimensions.

- Mounting holes


## C310K/...


(i) C310A/... series only:

The use of insertable deflection shields reduces the minimum distance to 0 mm . Without deflection shields, the minimum distance of the contactors, depending on the arrangement, can increase to 100 mm .

## Electrical endurance

- Minimum distances (3) to live or earthed parts

- Predicted electrical endurance as a function of the breaking current



## Mounting instructions

- C310K/...

- C310A/...

- C310S/...

(i) The contactor can be mounted horizontally or vertically on a prepared mounting plate.


## Mounting positions hanging upside

 down are not allowed!
## Maintenance and safety instructions

## Maintenance:

- C310 series contactor are basically maintenance free.
- Make regular in-depth visual inspections once or twice a year.


## Safety instructions:

- The device must be used according to the intended purpose as specifred in the technical documentation. You are obliged to observe all specifications depending on operating temperature, degree of polluton etc. that are relevant to your application.
- Without further safety measures the contactors are not suited for use in potentially explosive atmospheres.
- In case of malfunction of the device or uncertainties stop using it any longer and contact the manufacturer instantly.
- Tampering with the device can seriously affect the safety of people and equipment. This is not permitted and leads to an exclusion of liability and warranty.
- Coil suppression for reducing surges when the coil is switched off is optimally attuned to the contactor switching behaviour. The existing opening characteristic must not be negatively influenced by parallel connection with an external diode.
- Contactors running permanently may heat up. So make sure that the contactor has sufficiently cooled down before you start any inspection or maintenance work.

For detailed maintenance, safety and mounting instructions please refer to our operating manuals © C310-M.en!

- When installing contactors with magnetic blowout make sure to do it in such a way that no magnetizable parts can be attracted by the ermanett magnets that are also capable of destroying all data of swipe cards.
- In general, strong electromagnetic fields can be generated in the area around the contactors. These can influence other components in the area of the contactors.
- Improper handling of the contactor, e.g. when hitting the floor with some impact, can result in breakage, visible cracks and deformation.

Defective contractors or parts (e.g. arc chambers, auxiliary switches) must be replaced immediately!


For a detailed list of all safety instructions see here:
E) schaltbau.info/safety3en!

## Schaltbau GmbH

For detailed information on our products and services visit our website -
or give us a call!
Schaltbau GmbH Hollerithstrasse 5 81829 Munich Germany

Phone	$+498993005-0$
Fax	$+498993005-350$
Internet	www.schaltbau.com
e-Mail	contact@schaltbau.de

Phone $\quad+498993005-0$
+4989930 05-350
e-Mail contact@schaltbau.de

## IRIS.

Certification
The production facilities of Schaltbau GmbH have been IRIS certified since 2008.


Certified to DIN EN ISO 14001 since 2002. For the most recent certificate visit our website.


Certified to DIN EN ISO 9001 since 1994. For the most recent certificate visit our website.

## Electrical Components and Systems for Railway Engineering and Industrial Applications

Connectors

Snap-action switches

## Contactors

 Emergency disconnect switches- Connectors manufactured to industry standards
- Connectors to suit the special requirements of communications engineering (MIL connectors)
- Charging connectors for battery-powered machines and systems
- Connectors for railway engineering, including UIC connectors
- Special connectors to suit customer requirements
- Snap-action switches with positive opening operation
- Snap-action switches with self-cleaning contacts
- Snap-action switch made of robust polyetherimide (PEI)
- Snap-action switch with two galvanically isolated contact bridges
- Special switches to suit customer requirements
- $\quad$ Single and multi-pole DC contactors
- High-voltage AC/DC contactors
- Contactors for battery powered vehicles and power supplies
- Contactors for railway applications
- Terminal bolts and fuse holders
- DC emergency disconnect switches
- Special contactors to suit customer requirements
- Equipment for driver's cab
- Equipment for passenger use
- High-voltage switchgear
- High-voltage heaters
- High-voltage roof equipment
- Equipment for electric brakes
- Design and engineering of train electrics to customer requirements


[^0]:    * Corresponds to 50 switching operations $1.5 \times I_{e}$ and 6,000 switching operations $1.0 \times I_{e}$

