NT[™] Integrated Flow Controller, Model 6500

For precision flow control in legacy applications

Whether it is automation, process control or safety concerns that require accurate flow control of liquid chemicals and CMP slurry, the instrumentation must be clean, accurate and reliable. Using the latest electronic technology and high-purity materials, Entegris has designed a leading-edge liquid flow controller to allow for greater control of your process flow variables.

- PTFE wetted surfaces for high-purity applications
- Nonmetallic components for corrosion resistance
- Integral pressure transducer for additional process information
- One percent (1%) full scale accuracy for critical dispense applications
- Compact footprint for easy field installs with limited space
- Fast response for accurate dispense rates

CONSTRUCTED FOR COMPATIBILITY

The NT™ Integrated Flow Controller (IFC), model 6500 was developed for use in ultra high-purity liquid chemical instruments and slurry applications.

The instrument's valve seat and diaphragm are designed to minimize dead volume and fluid shear, reducing the possibility of process contamination. Featuring fluoropolymers for wetted parts and inert materials for nonwetted parts, the IFC model 6500 is resistant to harsh chemical environments and external spraydowns.

ADVANCED TECHNOLOGY

The NT IFC, model 6500 utilizes dual PTFE valve diaphragms for fluid containment and contamination protection. Featuring the latest motorized valve and flowmeter technology, encapsulated internal electronics control all aspects of the flow controller. The unit is activated by a setpoint signal (i.e., 4-20 mA, 0-10 VDC, 0-5 VDC) to maintain fluid flow at the desired setpoint.

APPLICATIONS

We are solving today's flow control challenges using the NT IFC, model 6500. Combined with our differential pressure based flowmeter and leading-edge control valve technology, the closed-loop flow controller is ideal for:

- Continuous flow control for critical dispense applications
- CMP slurry dispense to replace existing peristaltic pumps
- · Batch control for chemical spiking and blending
- On-demand chemical mixing applications

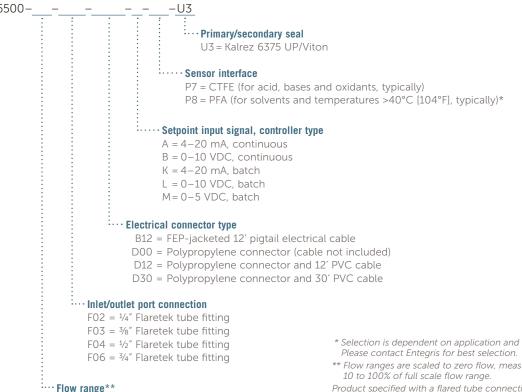
SPECIFICATIONS

f full scale from a of full scale from rated using deion of full scale from	(In addition to minp) ically isolated outputs, of 20 – 100% of flow rang m 10 – 20% of flow rang nized water at 23°C [73	ge °F])					
5°C (50 – 149°F) C (±10%) @ 1 am I – 20 mA electric f full scale from a of full scale from	Sensor interface Primary O-ring Polypropylene, F (In addition to m) ically isolated outputs, of the control	PFA or CTFE Kalrez® EP, PVDF and Viton® aterials listed above) one for flow and one for pressure e ge PF])					
5°C (50 – 149°F) C (±10%) @ 1 am I – 20 mA electric f full scale from a of full scale from	Primary O-ring Polypropylene, F (In addition to m polypropylene,	EP, PVDF and Viton® aterials listed above) one for flow and one for pressure e ge					
5°C (50 – 149°F) C (±10%) @ 1 am I – 20 mA electric f full scale from a of full scale from	Polypropylene, F (In addition to m ically isolated outputs, of 20 – 100% of flow rang m 10 – 20% of flow rang nized water at 23°C [73	EP, PVDF and Viton® aterials listed above) one for flow and one for pressure e ge					
5°C (50 – 149°F) C (±10%) @ 1 am I – 20 mA electric f full scale from a of full scale from	(In addition to minp) ically isolated outputs, of 20 – 100% of flow rang m 10 – 20% of flow rang nized water at 23°C [73	one for flow and one for pressure e ge					
C (±10%) @ 1 am 1 – 20 mA electric f full scale from a of full scale from rated using deion of full scale from	ically isolated outputs, of 20 – 100% of flow rang m 10 – 20% of flow rang nized water at 23°C [73	e ge °F])					
- 20 mA electri f full scale from of full scale from rated using deion of full scale from	ically isolated outputs, o 20 – 100% of flow rang m 10 – 20% of flow rang nized water at 23°C [73	e ge °F])					
f full scale from a of full scale from rated using deion of full scale from	20 – 100% of flow rang m 10 – 20% of flow rang nized water at 23°C [73	e ge °F])					
of full scale from	m 10 – 20% of flow rang	ge °F])					
rated using deior	nized water at 23°C [73	°F])					
of full scale fror							
	m 20 – 100% of flow rar						
f full scale from :		$\pm 0.5\%$ of full scale from 20 – 100% of flow range					
±1% of full scale from 10 – 20% of flow range							
4 kPa (0 – 60 psi	ig)						
a (10 psig)							
² a (60 psig)							
690 kPa (100 psig)							
$\pm 1\%$ of full scale (includes combined effects of linearity, hysteresis, and repeatability)							
d parts, >3 millio	on cycles						
	95% of full scale flow r	ange					
onds from 10 to		ange					
onds from 10 to mA, 0 – 10 VDC		unge					
		d parts, >3 million cycles					

Note: Specifications are subject to change without notice. Please consult the factory for the most current information.

DIMENSIONS

	Dimensions						
Inlet/outlet port connection	A	В	С				
1/4" Flaretek®	123.4 mm (4.86")	244.1 mm (9.61")	19.6 mm (0.77")				
³⁄₀″ Flaretek	123.4 mm (4.86")	247.7 mm (9.75")	19.6 mm (0.77")				
½" Flaretek	127.0 mm (5.00")	251.7 mm (9.91")	21.6 mm (0.85")				
¾" Flaretek	134.9 mm (5.31")	257.8 mm (10.15")	25.7 mm (1.01")				


7.1 mm (0.28°) 72.9 mm 47.0 mm (1.85°) 197.6 mm (7.78°) 216.7 mm (8.53°) 229.9 mm (9.05°) 8 End View 55.5 mm (2.58°) (2.58°)

The flow controller is available in the following fitting size and flow range combinations:

Fitting size (fitting code)	то	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Т9
½" (F02)	Yes	Yes	Yes	Yes	Yes	_	_	_	_	_
³/8" (F03)	Yes	_	_	_						
½" (F04)	_	_	Yes	_						
³ / ₄ " (F06)	_	_	_	_	_	_	_	Yes	Yes	Yes

ORDERING INFORMATION

NT Integrated Flow Controller, Model 6500: part number

···· Flow range**

T0 = 0 - 50 mL/minT5 = 0 - 2.5 L/minT1 = 0 - 125 mL/minT6 = 0 - 5 L/minT2 = 0 - 250 mL/minT7 = 0 - 10 L/minT3 = 0 - 500 mL/minT8 = 0 - 20 L/minT4 = 0 - 1250 mL/min T9 = 0 - 40 L/min

- * Selection is dependent on application and chemical media.
- ** Flow ranges are scaled to zero flow, measurement is from

Product specified with a flared tube connection is packaged with two PVDF nuts. For alternative nut materials, or custom configurations and specifications, please contact the factory. (Note: Specifications are subject to change without notice. Please consult the factory for the most current information.)

FOR MORE INFORMATION

Please call your Regional Customer Service Center today to learn what Entegris can do for you. Visit entegris.com and select the Contact Us link to find the customer service center nearest you.

TERMS AND CONDITIONS OF SALE

All purchases are subject to Entegris' Terms and Conditions of Sale. To view and print this information, visit $\underline{\text{entegris.com}}$ and select the $\underline{\text{Terms } \& \text{Conditions}}$ link in the footer.

Corporate Headquarters 129 Concord Road Billerica, MA 01821

Customer Service

Tel +1 952 556 4181 Fax +1 952 556 8022 Toll Free 800 394 4083

Entegris®, the Entegris Rings Design®, and other product names are trademarks of Entegris, Inc. as listed $on\ entegris. com/trademarks.\ All\ third-party\ product\ names,\ logos,\ and\ company\ names\ are\ trademarks\ or\ product\ names\ are\ trademarks\ or\ product\ names\ names\$ registered trademarks of their respective owners. Use of them does not imply any affiliation, sponsorship, or endorsement by the trademark owner.

©2004-2021 Entegris, Inc. | All rights reserved. | Printed in the USA | 3963-1867ENT-0821