

Description:

The HYDAC Flow Switch in the series HFS 2100 is based on the variable area float principle. The test medium moves a spring-loaded float in the direction of flow, depending on the flow rate. A reed contact is fitted to the outside of the instrument and is therefore separate from the flow circuit. When the magnet inside the float reaches the pre-set position, the reed contact will switch. To protect it from external influences, the switch is encapsulated in a casing designed to allow steplessly variable adjustment.
The instruments are designed to be capable of monitoring threshold values reliably, even when the viscosity
fluctuates. The viscosity may fluctuate between 30 and 600 cSt .
The main areas of application are:

- Central lubrication systems
- Circulation oil lubrication systems
- Transformers
- Cooling systems and circuits
- Lubrication circuits
- Hydraulic systems
- Pumps
- Welding machines and laser systems
- Chemical industry
- Research \& development

Fluid type:

- Oils / viscous fluids

Special features:

- Accuracy $\leq \pm 10$ \% FS
- Viscosity compensation from 30 .. 600 cSt
- Optional mounting position
- High level of function reliability
- High level of switching accuracy
- Stepless switch point setting by user
- High pressure resistance
- Threaded connection
- ATEX version also available for use in potentially explosive atmospheres

Technical specifications:

Input data			
Switching ranges [1/min]	Size 1	Size 2	
	0.5 .. 1.6	0.5 .. 1.5	
	0.8 .. 3.0	1 .. 4	
	2.0 .. 7.0	2 .. 8	
		3 .. 10	
		$5 . .15$	
		8 .. 24	
		10 .. 30	
		15.. 45	
		$20 . .60$	
		$30 . .90$	
		$35 . .110$	
Operating pressure		250 bar	
Brass version	300 bar		
Stainless steel version	350 bar	300 bar	
Pressure drop [bar]	0.02 .. 0.2	0.02 .. 0.4	
Mechanical connection	See dimensions		
Parts in contact with mediumBrass version			
	Stainl. st. 1.4571; FKM ${ }^{1) ;}$ Brass (nickel-pl.); Brass; Hard ferrite Stainl. st. 1.4571; FKM ${ }^{1 \text {); }}$ Hard ferrite		
Stainless steel version			
Output data			
Switching outputs ${ }^{2 /}$	1 or 2 reed contacts Change-over or N/O type		
Accuracy	$\leq \pm 10$ \% FS		
Repeatability	2 \% FS max.		
Switching capacity			
Change-over contact ${ }^{3 /}$	max.	max.	
Male connection DIN 43650	$250 \mathrm{~V} / 1.5 \mathrm{~A} / 50 \mathrm{VA}$	250V / 1.5 A / 50 VA	
Male connection M12x1	$125 \mathrm{~V} / 1.5 \mathrm{~A} / 50 \mathrm{VA}$	250V / 1.5 A / 50 VA	
N/O contact Male connection DIN 43650 Male connection M12x1	max.	max.	
	$230 \mathrm{~V} / 3 \mathrm{~A} / 60 \mathrm{VA}$	$250 \mathrm{~V} / 3 \mathrm{~A} / 100 \mathrm{VA}$	
	$125 \mathrm{~V} / 3 \mathrm{~A} / 60 \mathrm{VA}$	$250 \mathrm{~V} / 3 \mathrm{~A} / 100 \mathrm{VA}$	
Environmental conditions			
Operating temperature range	$-20 . .+70^{\circ} \mathrm{C}$		
Fluid temperature range			
Male connection DIN 43650	$-20 . .+120{ }^{\circ} \mathrm{C}$ (optional -20 .. $+160{ }^{\circ} \mathrm{C}$)$-20 . .+85{ }^{\circ} \mathrm{C}$		
Male connection M12x1			
Viscosity range	30 .. 600 cSt		
(Emark	Directive 2006 / 95 / EC Directive 2004 / 108 / EC		
Protection class to DIN 40050	IP 65		
Other data			
Housing material	Brass (nickel-pl.) or stainl. steel 1.4571		
Electrical connection	Male connection DIN 43650 Male connection M12x1		
Note: FS (Full Scale) = relative to the complete measuring range ${ }^{1)}$ Other seal materials available on request ${ }^{2)}$ The contact opens / switches when the flow falls below the pre-set switching point. ${ }^{3)}$ Minimum load 3 VA			

Model code:

HFS 21 XX - XX - XXXX-XXXX - 7 - X - X - $\underline{000}$ $\underset{2}{\text { Measuring principle }}=$
$2=$ Variable area float
$1=$ Oils / viscous fluids
Mechanical
Mechanical
connection
$1=1 / 4 "$
$2=3 / 8 "$
$1=1 / 2 "$
$3=14 "$
$3=1 / 2$
$4=3 / 4$
$5=11$
Electrical connection
$5=$ Male connection DIN 43650 3 -pole + PE

- Male
$6=$ Male connection M12x1, 4-pole (without connector)
Switching contacts
$1 \mathrm{~S}=1 \mathrm{~N} / \mathrm{O}$ contact
$2 \mathrm{~S}=2 \mathrm{~N} / \mathrm{O}$ contacts
$1 \mathrm{~W}=1$ Change-over contact
2W = 2 Change-over contact
Switching ranges in $1 / \mathrm{min}$)
Oil 10%-Size 1-
00.5-01.6; 00.8-03.0; 02.0-07.0

Oil 10 \% -Size 2-
00.5-01.5; 0001-0004; 0002-0008; 0003-0010;

005-0015; 0008-0024; 0010-0030; 0015-0045;
020-0060; 0030-0090; 0035-0110
Accuracy
$7=\leq 10.0 \%$ FS
Housing materia
B Brass (nickel-plated)
$\mathrm{B}=$ Brass (nickel-plat
$\mathrm{S}=$ Stainless steel
Mechanical indicator
Mechanical indicator
$0=$ Without indicato
$=$ Without indicat
$=$ With indicator
Modification number
$000=$ Standard
(see Dimensions)
(see Dimensions)
When the adaliable on request.
selected, the second contact is fitted on the side of

Note:
On units with a different modification number, please read the label or the technical amendment details supplied with the instrument.

Accessories:

Appropriate accessories, such as electrical connectors, can be found in the Accessories section

Pin connections:

Pin	HFS $21 \times 5-\times \mathrm{S}$	HFS $21 \times 5-\mathrm{xW}$
1	Centre	Centre
2	N/O contact	N/C contact
3	n.c.	N/O contact
\perp	PE	PE

M12x1

Pin	HFS 21x6-xS	HFS 21x6-xW
1	Centre	Centre
2	n.c.	N/C contact
3	n.c.	n.c.
4	N/O contact	N/O contact

Notes on installation:

- The medium must not contain solid particles! We recommend using contamination strainer.
- External magnetic fields can affect the switching contact. Ensure sufficient distance from magnetic fields (e.g. from electric motors)

Dimensions without indicator

$\begin{aligned} & \hline \text { Type } \\ & {[/ / \mathrm{min}]} \end{aligned}$		Installation dimensions [mm]			Weight (approx.) [g]
	DN	SW	G	L	
0.5 .. 1.6	$\begin{aligned} & \hline 8 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 27 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 / 4 " \prime \\ 3 / 8^{\prime \prime} \\ 1 / 2^{\prime \prime} \text {) } \end{array}$	$\begin{aligned} & 98 \\ & 108 \\ & 90 \end{aligned}$	$\begin{aligned} & 400 \\ & 450 \\ & 350 \end{aligned}$
$\frac{0.8 . .3 .0}{2.0 \text {.. } 7.0}$	15	27	1/2"	90	350

Standard

Dimensions with indicator:

OIL -Size 1- with indicator

Type [1/\mathrm{min}]{}	Installation dimensions [mm]			Weight (approx.) [g]	
	DN	SW	G	L	
$0.5 . .1 .6$					
0.8 .3 .0	15	30	$1 / 2 "$	90	570
2.0 .7 .0					

OIL -Size 2- with indicator

Type [$/ / \mathrm{min}$]	Installation dimensions [mm]					Weight (approx.) [g]
	DN	SW	G	L	T	
0.5 .. 1.5	$\begin{array}{\|l\|} \hline 8 \\ 15 \\ 20 \\ 25 \\ \hline \end{array}$	34	1/4"	152	10	1590
		34	1/2"	152	14	1515
1 .. 4		34	3/4"	152	15	1430
		40	1" *)	130	17	1250
2 .. 8	$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 34 \\ & 34 \\ & 40 \end{aligned}$	$\begin{aligned} & 1 / 2 " \\ & 3 / 4 " \\ & 1 " *) \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \\ & 130 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 17 \end{aligned}$	$\begin{aligned} & 1515 \\ & 1430 \\ & 1250 \end{aligned}$
3 .. 10						
5 .. 15						
8 .. 24						
10 .. 30	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 34 \\ & 40 \end{aligned}$	$\begin{aligned} & 3 / 4 " \text { ") } \\ & 1 " \text {) } \end{aligned}$	$\begin{aligned} & 152 \\ & 130 \end{aligned}$	$\begin{aligned} & 15 \\ & 17 \end{aligned}$	$\begin{aligned} & 1430 \\ & 1250 \end{aligned}$
15 .. 45						
20 .. 60						
30 .. 90	25	40	1"	130	17	1250
$35 . .110$						

*) Standard

