Multiple Limit Switches

EUCHNER

More than safety.

EUCHNER

More than safety.

Headquarters in Leinfelden-Echterdingen

Logistics center in Leinfelden-Echterdingen

Production location in Unterböhringen

Internationally successful - the EUCHNER company

EUCHNER GmbH + Co. KG is a world-leading company in the area of industrial safety technology. EUCHNER has been developing and producing high-quality switching systems for mechanical and systems engineering for more than 50 years.
The medium-sized family-operated company based in Leinfelden, Germany, employs more than 500 people around the world, 400 in Germany alone.

In addition to the production locations in Unterböhringen and Shanghai/China, 14 subsidiaries and other sales partners in Germany and abroad work for our international success on the market.

Quality and innovation - the EUCHNER products

A look into the past shows EUCHNER to be a company with a great inventive spirit. We take the technological and ecological challenges of the future as an incentive for extraordinary product developments.

EUCHNER safety switches monitor safety doors on machines and installations, help to minimize dangers and risks and thereby reliably protect people and processes. Today, our products range from electromechanical and electronic components to intelligent integrated safety solutions. Safety for people, machines and products is one of our dominant themes.

We define future safety technology with the highest quality standards and reliable technology. Extraordinary solutions ensure the great satisfaction of our customers. The product ranges are subdivided as follows:

- Transponder-coded Safety Switches (CES)
- Transponder-coded Safety Switches with guard locking (CET)
- Interlocking and guard locking systems (Multifunctional Gate Box MGB)
- Access management systems (Electronic-Key-System EKS)
- Electromechanical Safety Switches
- Magnetically coded Safety Switches (CMS)
- Enabling Switches
- Safety Relays
- Emergency Stop Devices
- Hand-Held Pendant Stations and Handwheels
- Safety Switches with AS-Interface
- Joystick Switches
- Position Switches

Multiple Limit Switches

General 4
Multiple Limit Switches 8
Accessories 27
Technical data 30
Trip Rails/Trip Dogs 35
Accessories 42
Installation notes 43
Appendix
Glossary 44
Overview of Range 45

General information on mechanical multiple limit switches

Application

EUCHNER precision multiple limit switches are used for controlling and positioning in all areas of mechanical and systems engineering and for solving automation tasks.

The main advantages of these highly accurate and reliable positioning devices are:

- Minimum space requirements due to compact design

Low-cost connection through the use of a common wiring cable

- Easy access to all switch stations for test and service purposes
- Easy installation

A range of housing versions, including DIN versions, are available to suit the full spectrum of application fields. A high standard of quality is always guaranteed in every installation position by the degree of protection IP 67.

Function

Precision multiple limit switches possess several switching elements arranged in a row. The spacing between the individual switching positions of 12 mm and 16 mm is standardized in accordance with DIN 43697. The range is completed with a particularly compact, space-saving version with a spacing of 8 mm .
The switching elements are actuated by means of plungers. This action is achieved with trip dogs in accordance with DIN 69 639, which are mounted with an interference fit in trip rails according to DIN 69638 (see separate page 35).

Design

Depending on the technical requirements in terms of switching point accuracy and approach speed, four functionally different plunger types (chisel, roller, ball and domed plungers) are used.
Depending on the plunger type, the reproducible switching point accuracy is $\pm 0.002 \mathrm{~mm}$ and the maximum approach speed is $120 \mathrm{~m} / \mathrm{min}$.
The precision multiple limit switches can be assembled with snap-action and safety switching elements, or also in combination with inductive switching elements. The mechanical life of the switching elements amounts to 30×10^{6} mechanical operating cycles.
EUCHNER uses the high-quality and proven acrylonitrile-butadiene rubber (NBR) for all seals and sealed areas. This material is resistant to oils, greases, fuels, hydraulic fluids and most known cooling lubricants. Moreover, NBR possesses high mechanical rigidity over a wide temperature range and so it is perfectly suitable for the highly stressed diaphragm seal, which separates the plunger compartment and the interior of the switch. The material used for the diaphragm seal is a key criterion for the quality, mechanical life and precision of the EUCHNER multiple limit switches. The same material is used for the cover seal and the cable entry.

Exterior diaphragm

A series with an exterior diaphragm which is designed to resist the effect of resinous cooling lubricants is also available.
The exterior diaphragm provides additional sealing of the plunger outside the housing.
The plunger guides in the housing are thus reliably protected from the penetration of the cooling lubricant. Plunger sticking is prevented and the replacement of the switch or plunger is unnecessary. For technical data on this series see page 24 and 25.

Interchangeable plunger guide

The series RGCS with its interchangeable plunger guide facilitates quick and easy plunger replacement without re-adjustment of the multiple limit switch. This keeps production downtimes as brief as possible. In case of damage or wear to the plunger, e. g. when processing abrasive materials, and also when the plunger has become completely stuck due to resinous cooling lubricants, it is only necessary to replace the plunger guide and plunger on these multiple limit switches.
The complete plunger guide is dismantled from the plunger side. The plunger can be replaced easily and quickly by the operator without special tools. Specialist knowledge is not required. It is not necessary to make changes to the machine installation or perform time-consuming re-adjustment of the system.
In this way, repair costs are reduced and machine downtimes are minimized. For technical data on this series see page 26.

Plunger systems

General

Plungers for multiple limit switches are made of stainless steel and are extremely accurate.
In conjunction with a plunger guide with a special surface finish, operation is extremely reliable and maintenance-free.

There are two different types of actuating systems, depending on the application. For standard applications, the plunger is fitted with a telescopic device.
With this system, the plunger can be depressed to the reference surface without damaging the switching element.
Multiple limit switches with safety switching elements possess a "rigid" plunger instead of this plunger with telescopic action, which ensures positive action in accordance with EN 60947. This means that the contact point will be reliably opened in the event of mechanical failure of the switching element - e. g. owing to the failure of a contact spring or contact weld resulting from an overload.

Plunger travel

The pictures show the various positions of a plunger actuated by a trip dog. The precise values for the relevant design are shown in the technical data.

Travel ratio for plunger/trip dog

All the plunger travel data shown in the technical data refers to axial actuation. When using our trip dogs in accordance with DIN 69639, this travel is doubled at the trip rail.

Plunger types

Depending on the technical requirements, four functionally different plunger types (chisel, roller, ball and domed plungers) are used for 8, 12 or 16 mm plunger spacing respectively.

Chisel plunger D

Hardened and polish-ground.
Operating point accuracy up to $\pm 0.002 \mathrm{~mm}$.

Max. approach speed of $40 \mathrm{~m} / \mathrm{min}$.

Roller plunger \mathbf{R} with plain bearing

(standard version for roller plunger)
Hardened roller.
Operating point accuracy up to $\pm 0.01 \mathrm{~mm}$.
Max. approach speed of $80 \mathrm{~m} / \mathrm{min}$.

Roller plunger B with ball bearing

Hardened roller.

Operating point accuracy up to $\pm 0.01 \mathrm{~mm}$.
Max. approach speed of $120 \mathrm{~m} / \mathrm{min}$.

Ball plunger K

(not in conjunction with
safety switching elements)
Hardened ball.

Can be actuated from various
directions.
Operating point accuracy up to $\pm 0.01 \mathrm{~mm}$.
Max. approach speed of $10 \mathrm{~m} / \mathrm{min}$.

Dome plunger W

(instead of ball plunger with
safety switching elements)
Hardened and polish-ground.

Can be actuated from various directions.
Operating point accuracy up to $\pm 0.002 \mathrm{~mm}$.
Max. approach speed of $10 \mathrm{~m} / \mathrm{min}$.

Switching elements

Snap-action switching element

Snap-action switching elements are predominantly used in mechanical limit switches.
On snap-action switching elements, the change from the completely closed state to the completely open state is made at a defined point (operating point).
As a result the switching point is at a defined position unlike on slowaction contact elements. Snap-action switching elements typically have a switching hysteresis.

Slow-action switching element

On slow-action switching elements the opening of the switching element is directly dependent on the position of the plunger. The further the plunger is moved, the further the switching element is opened. The plunger travel is therefore directly proportional to the travel covered by the switching contact in the switching element. From the travel diagrams it can be seen at which point the switching element changes from the closed state to the open state.

Positively driven contacts Θ

Positively driven contacts are used in the switching elements. These are special contact elements that are designed to ensure the switching contacts are always reliably separated. Even if contacts are welded together, the connection is opened by the actuating force.
It is a common feature of all safety switching elements that at least one switching element is designed as a positively driven contact. In safetyrelated circuits, only switching elements with positively driven NC contacts are allowed.

General information on inductive multiple limit switches

Inductive multiple limit switches are used for positioning and control in all areas of mechanical and systems engineering. Inductive multiple limit switches are used for automation tasks in machines for the wood, textile and plastics industry, as well as for area monitoring for robotics.

Due to their non-contact and thus wear-free principle of operation, inductive multiple limit switches are insensitive to heavy vibration, heavy soiling and have an above average mechanical life even in aggressive ambient conditions.

Four different designs of inductive multiple limit switches are available for a very wide range of applications with $8 \mathrm{~mm}, 12 \mathrm{~mm}$ or 16 mm proximity switch spacing; these can be equipped with numerous inductive switching elements. In addition to these multiple limit switches, single limit switches according to DIN 43693 and the particularly compact ESN design are also available. With these versions a solution can be provided for almost every requirement.

Interchangeability with mechanical multiple limit switches and single limit switches means that it is possible to straightforwardly modify machines. The switches can therefore be retrofitted on existing machine installations to take full advantage of the benefits of non-contact switches.

For safety-relevant end of travel limit switching, EMERGENCY STOP functions or other safety critical applications, it is possible to equip the multiple limit switches with a mixture of the necessary mechanical safety switching elements and inductive switching elements. You can combine the advantages of non-contact switching with positively driven NC contacts.

Switching functions

NO function

The NO function means that the load current flows when the active face of the inductive switching element is activated and that no current flows when the active face is not activated.

DC NO, PNP

NC function

The NC function means that the load current does not flow when the active face of the inductive switching element is activated and that current flows when the active face is not activated.

DC NC, PNP

NO + NC function

The NO + NC function incorporates both an NO function and an NC function. Associated circuit diagrams and wiring diagrams are given in the technical data.

Suppressor circuits

The inductive switching elements are largely protected against external interference by use of various circuit techniques (suppressor circuits). For utilization category DC-13 the output is to be protected with a freewheeling diode for inductive loads.

Special switching elements

Inductive switching elements according to NAMUR

These switching elements fulfill the specification IEC 60 947-5-6 and IEC 61934.
The current consumption at an operating voltage of 8.2 V is greater than 2.5 mA when the oscillator face is not activated and less than 1.0 mA when the oscillator face is activated. The current consumption characteristic is linear during the transition from the inactivated to the activated state of the oscillator face, i. e. these switches do not have a snap action.

DC-2-wire switching elements

Two-wire switching elements can be used in principle instead of mechanical switches. Their low off-state current makes them especially suitable for use in conjunction with programmable logic controllers.
Compared with three-wire switching elements they have the advantage of requiring less wiring.

Increased operating distance

For designs with 12 mm proximity switch spacing, switching elements with increased operating distance are available on request (rated operating distance 5 mm).
Due to their technical characteristics, these switching elements can be used both with a pulsed operating voltage and an operating voltage that is not pulsed.

Customized versions

Approvals

All multiple limit switches with this plug connector or permanently connected cable are approved by Underwriters Laboratories (UL, Canada and USA).

Mixed contact assembly

(only in multiple limit switches with 12 and 16 mm plunger spacing) For specific functions on machines and systems, e.g. end of travel limit switching, EMERGENCY STOP or similar, one or more stations on multiple limit switches can be equipped with safety switching elements.
Multiple limit switches with 12 mm plunger spacing can be assembled on request with a mixture of mechanical and inductive switching elements.

Plug connector

Many of our multiple limit switches are also available in a version with a plug connector. These versions all have UL approval.

Approach speed and usage with roller plungers

Using high quality bearings and technology matched to the application, approach speeds up to $120 \mathrm{~m} / \mathrm{min}$ and very high usage can be realized at the same time.

High/low temperature

For use in extreme temperature conditions, multiple limit switches can be supplied in special versions on request.

Axis area monitoring

EUCHNER multiple limit switches and trip rails are also suitable for use in axis area monitoring.

On request, complete solutions are available in different versions.

General information on trip rails/trip dogs

EUCHNER trip rails and trip dogs are successfully used in conjunction with EUCHNER multiple limit switches in all areas of mechanical and systems engineering and for solving automation tasks. They are needed wherever travel-dependent positioning of various work steps is required.

The particular advantages of the EUCHNER combination include:

- Very high accuracy (to 0.002 mm).
- Long mechanical life (low mechanical wear and resistant to corrosion due to selected materials).
- Easy to use (user-friendly fastening and adjustment using refined precision mechanics).

EUCHNER trip rails and trip dogs are available in two variants. The function is exactly the same, in principle they only differ in the adjustment of the dog.

System-U

U-trip rails enable the trip dogs to be adjusted from the switch side. The trips dogs can be installed and adjusted quickly and easily in any location. Materials are cast iron or aluminum.
U-trip dogs are designed for usage in U-trip rails. They have a split plate clamp mechanism and enable delicate, accurate adjustment, even when the limit switch is activated.

System-G

G-trip rails enable the trip dogs to be adjusted from the side opposite the switch. They are made of steel and are protected from corrosion by a special surface treatment. The G-trip rails can be ordered pre-assembled or as a kit for self-assembly.
G-trip dogs are designed for usage in G-trip rails. The trip dogs are clamped by a hexagon socket head screw with spring washer. This spring washer locks the trip dog in place even when the trip rail is in a vertical position and allows precise adjustment.

Selection table for mechanical precision multiple limit switches

Series (here only preferable series: for other series see catalog)
RGBF Standard switch according to DIN 43697, upright housing, large product range
SN Compact upright housing; high market acceptance due to versatile applications, low cost
SB Small housing with enlarged space for wiring (only with 8 mm plunger spacing)
GSBF Upright housing, versions with up to max. 20 plungers possible

Plunger spacing (mm)

8 Small housing for installations where there is little space
12 Industry standard, large product range
16 Only necessary in special applications

Plunger types

D Chisel plunger for high operating point accuracy
R Roller plunger for approach speeds up to max. $80 \mathrm{~m} / \mathrm{min}$
B Roller plunger for approach speeds up to max. $120 \mathrm{~m} / \mathrm{min}$
K Ball plunger, only necessary in special applications
W Dome plunger; only necessary in special applications

Switching element

5021 NC + 1 NO, precision snap-action switching element
5081 NC, safety switching element, slow-action switching element
1 NC + 1 NO, safety switching element, snap-action 514 switching element

5521 C/0, snap-action switching element (standard)
$6141 \mathrm{C} / 0$, snap-action switching element for low currents

Options

AM Exterior diaphragm
ST Plug connector

LED	LED display

Series				Plunger spacing			Plunger types					Switching element					Options			Page
RGBF	SN	SB	GSBF	8	12	16	D	R	B	K	W	502	508	514	552	614	AM	St	LED	
-					-		\bullet	\bullet	-	\bigcirc	\bigcirc	-	-	-				\bigcirc	-	10
\bullet					\bullet		\bullet	\bullet				\bullet		\bigcirc			\bullet	\bigcirc	\bigcirc	24
-						\bullet	\bullet	\bullet	\bigcirc	\bigcirc	\bigcirc	-	\bullet	-				\bigcirc	\bullet	10
	-			\bullet			-	\bullet		\bullet					\bullet	\bullet		\bigcirc		14
	-				-		-	-	-	\bigcirc	\bigcirc	-	-	-				\bigcirc	-	12
	\bullet				\bullet		\bullet	\bullet				\bullet					-	O	\bigcirc	25
	\bullet					\bullet	\bullet	\bullet	0	0	0	-	\bullet	\bullet				\bigcirc	\bullet	12
		\bullet		\bullet			\bullet	\bullet		\bullet					\bullet	\bullet		O		15
			\bullet	\bullet			\bullet	\bullet		\bigcirc					\bullet	\bullet		\bigcirc		18
			\bullet		\bullet		\bullet	\bullet		0	\bigcirc	\bullet	\bullet	\bullet				\bigcirc	\bullet	16
			-			\bullet	\bullet	\bullet		O	O	\bullet	\bullet	\bullet				O	\bullet	16

Available
O Available on request

Selection table for inductive multiple limit switches

- Available

O Available on request

Series RGBF... 12/16 mm mechanical

- Plunger spacing 12 or 16 mm Upright housing according to DIN 43697
- Degree of protection IP67 according to IEC 60529
LED function display optional

Switching elements

- ES 502 E Snap-action switching element 1 NC + 1 NO
- ES 508 Slow-action switching element 1 NC Θ
- ES 514 Snap-action switching element $1 \mathrm{NC} \Theta+1 \mathrm{NO}$

On the usage of safety switching elements, the dog distance ${ }^{4-0.5}$ must be maintained to achieve the positively driven travel. The dogs must be positively mounted according to EN 1088, i.e. riveted, welded or secured in some other way against becoming loose.

LED function display (optional)

Function displays are available for the following voltage ranges (see accessories page 27):

- LE024ge	24 V DC (for ES 514)
- LE060	$12 \ldots 60 \mathrm{~V}$ AC/DC
- LE110	$110 \mathrm{~V} \mathrm{AC} \pm 15 \%$
- LE220	220 V AC $\pm 15 \%$

- LE060 $12 \ldots 60$ V AC/DC

110 V AC $\pm 15 \%$

- LE220

Series RGBF... mechanical
Plunger spacing 12 or 16 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed given applies in conjunction with EUCHNER trip dogs according to DIN 69639. Special versions of roller plungers for high usage on request
3) For safety reasons, multiple limit switches with switching elements ES 508 and ES 514 are not available with ball plungers 4) Plunger type on request

Number of plungers/ proximity switches	Plunger/proximity switch spacing			
	$I_{1}=12$		$I_{1}=16$	
	I_{2}	Housing material	I_{2}	Housing material
2	70	Die-cast aluminum, anodized	70	Die-cast aluminum, anodized
3	80		90	
4	90		105	
5	105		120	
6	120		140	
8	140		170	
10	170		200	Sand-cast aluminum, anodized
12	200	Sand-cast aluminum, anodized	240	
14	240		-	-
16	240		-	-

Series RGBF... 12/16 mm inductive

- Proximity switch spacing 12 or 16 mm

Upright housing according to DIN 43697

- Degree of protection IP67 according to IEC 60529
LED function display

Rated operating distance

With 12 mm proximity switch spacing, the rated operating distance is 2 mm , with 16 mm proximity switch distance it is 5 mm .

Mixed contact assembly

On request, mixed assembly with electromechanical safety switching elements according to IEC 60947 is possible for 12 mm proximity switch spacing.

LED function display

DC and $A C$ switching elements are equipped as standard with a function display on the switching element (yellow). The function display can be seen from the exterior.

Series RGBF... inductive
Proximity switch spacing 12 or 16 mm

Switching elements

Switching elements with 5 mm operating distance (16 mm proximity switch spacing) are supplied with two different oscillator frequencies to avoid mutual interference. Multiple limit switches must therefore be assembled alternately with these switching elements.

Further switching elements on request (see page 32/33)
 connector on request)

Series SN... 12/16 mm mechanical

- Plunger spacing 12 or 16 mm

Upright housing, small flange

- Degree of protection IP67 according to IEC 60529
LED function display optional

Switching elements

- ES 502 E Snap-action switching element $1 \mathrm{NC}+1 \mathrm{NO}$
- ES 508 Slow-action switching element 1 NC Θ
- ES 514 Snap-action switching element $1 \mathrm{NC} \Theta+1 \mathrm{NO}$

On the usage of safety switching elements, the dog distance 30.5 must be maintained to achieve the positively driven travel. The dogs must be positively mounted according to EN 1088, i.e. riveted, welded or secured in some other way against becoming loose.

LED function display (optional)

Function displays are available for the following voltage ranges (see accessories page 27):

- LE024ge
24 V DC (for ES 514)
- LE060
12 ... 60 V AC/DC
- LE110
- LE220
110 V AC $\pm 15 \%$
220 V AC $\pm 15 \%$

Series SN... mechanical

Plunger spacing 12 or 16 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has
2) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has
been run-in with approx. 2000 operating cycles been run-in with approx. 2000 operating cycles
3) The approach speed given applies in conjunction with EUCHNER trip dogs according to DIN 69639. Special versions of roller plungers for high usage on request
4) For safety reasons, multiple limit switches with switching elements ES 508 and ES 514 are not available with ball plungers 4) Plunger type on request

n	Plunger/proximity switch spacing						Housing material
Number of plungers/	$I_{1}=12$			$I_{1}=16$			
proximity switches	I_{2}	I_{3}	I_{4}	I_{2}	I_{3}	I_{4}	
2	36	12	19	48	16	24	Die-cast aluminum, anodized
3	48		24	72			
4	60			84			
5	72			-	-	-	
6	84			-	-	-	

Series SN... 12/16 mm inductive

Proximity switch spacing 12 or 16 mm
Upright housing, small flange
Degree of protection IP67 according to IEC 60529
LED function display

Rated operating distance

With 12 mm proximity switch spacing, the rated operating distance is 2 mm , with 16 mm proximity switch distance it is 5 mm .

Mixed contact assembly

On request, mixed assembly with electromechanical safety switching elements according to IEC 60947 is possible for 12 mm proximity switch spacing.

LED function display

DC and $A C$ switching elements are equipped as standard with a function display on the switching element (yellow). The function display can be seen from the exterior.

Series SN... inductive
Proximity switch spacing 12 or 16 mm

Switching elements

Switching elements with 5 mm operating distance (16 mm proximity switch spacing) are supplied with two different oscillator frequencies to avoid mutual interference. Multiple limit switches must therefore be assembled alternately with these switching elements.

Further switching elements on request (see page 32/33)

connector on request)

Series SN... 8 mm mechanical

- Plunger spacing 8 mm

Upright housing, without flange
Degree of protection IP67 according to IEC 60529

Switching elements

- ES 552 Snap-action switching element 1 changeover contact Standard switching element
- ES 614 Snap-action switching element 1 changeover contact suitable for switching low currents
(See technical data on the switching elements)

Series SN... mechanical
Plunger spacing 8 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

	Plunger types	R	R	R
	Chisel	Roller		
(plain bearing)	Ball			
Operating point accuracy ${ }^{11}$	± 0.02	± 0.05	± 0.03	mm
Approach speed, max. ${ }^{\text {1 }}$	20	50	8	$\mathrm{~m} / \mathrm{min}$

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639

n	Series SN... plunger spacing 8 mm			Series SB... plunger spacing 8 mm		
Number of plungers	I_{1}	Cable entry	Housing material	I_{1}	Cable entry	Housing material
2	34	M16 $\times 1.5$	Die-cast aluminum, anodized	34	M16 $\times 1.5$	Die-cast aluminum, anodized
3	42			42		
4	50			50		
5	58	M20 $\times 1.5$		58	M20 x 1.5	
6	66			-	-	-

Series SB... 8 mm mechanical

Plunger spacing 8 mm

Upright housing, without flange
With enlarged space for wiring
Degree of protection IP67 according to IEC 60529

Switching elements

ES 552 Snap-action switching element 1 changeover contact Standard switching element

- ES 614 Snap-action switching element 1 changeover contact suitable for switching low currents
(See technical data on the switching elements)

Series SB... mechanical
Plunger spacing 8 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639
 (plug connector on request)

Series GSBF... 12/16 mm mechanical

- Plunger spacing 12 or 16 mm

Upright housing

- Degree of protection IP67 according to IEC 60529
LED function display optional

Switching elements

- ES 502 E Snap-action switching element 1 NC + 1 NO
- ES 508 Slow-action switching element 1 NC Θ
- ES 514 Snap-action switching element $1 \mathrm{NC} \Theta+1 \mathrm{NO}$

On the usage of safety switching elements, the dog distance (4-0.5) must be maintained to achieve the positively driven travel. The dogs must be positively mounted according to EN 1088, i.e. riveted, welded or secured in some other way against becoming loose.

LED function display (optional)

Function displays are available for the following voltage ranges (see accessories page 27):

- LE060
12 ... 60 V AC/DC
- LE110 110 V AC $\pm 15 \%$
LE220 220 V AC $\pm 15 \%$

Series GSBF... mechanical
Plunger spacing 12 or 16 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Stipulated dog distance for safety switching elements

Version with LED function
display

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639
3) For safety reasons, multiple limit switches with switching elements ES 508 and ES 514 are not available with ball plungers 4) Plunger type on request

Number of plungers	Plunger spacing			
	$I_{1}=12$		$I_{1}=16$	
	I_{2}	Housing material	I_{2}	Housing material
2	70	Die-cast aluminum, anodized	70	Die-cast aluminum, anodized
3	70		82	
4	82		96	
5	96		112	
6	112		130	
8	130		160	Sand-cast aluminum, anodized
10	160	Sand-cast aluminum, anodized	192	
12	179		226	
14	208		256	
16	226		288	
18	256		-	-
20	288		-	-

[^0]Series GSBF... 12/16 mm inductive: not available

Series GSBF... 8 mm mechanical

- Plunger spacing 8 mm

Upright housing

- Degree of protection IP67 according to IEC 60529

Switching elements

- ES 552 Snap-action switching element 1 changeover contact Standard switching element
- ES 614 Snap-action switching element 1 changeover contact suitable for switching low currents
(See technical data on the switching elements)

Series GSBF... mechanical
Plunger spacing 8 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639
3) Plunger type on request
$\left.\begin{array}{c|c|c|}\hline \boldsymbol{n} \\ \text { Number of plungers/proximity switches }\end{array}\right)$
[^1]
Series GSBF... 8 mm inductive

Proximity switch spacing 8 mm
Upright housing
Degree of protection IP67 according to IEC 60529

Rated operating distance

With 8 mm proximity switch spacing, the rated operating distance is 1 mm .

Series GSBF... inductive
Proximity switch spacing 8 mm

Dimension drawing

Switching elements

Further switching elements on request (see page $32 / 33$)

Series GLBF... 12/16 mm mechanical

- Plunger spacing 12 or 16 mm

Horizontal housing

- Degree of protection IP67 according to IEC 60529
LED function display optional

Switching elements

- ES 502 E Snap-action switching element 1 NC + 1 NO
- ES 508 Slow-action switching element 1 NC Θ
- ES 514 Snap-action switching element $1 \mathrm{NC} \Theta+1$ NO

On the usage of safety switching elements, the dog distance (4-0.5) must be maintained to achieve the positively driven travel. The dogs must be positively mounted according to EN 1088, i.e. riveted, welded or secured in some other way against becoming loose.

LED function display (optional)

Function displays are available for the following voltage ranges (see accessories page 27):

- LE060
12 ... 60 V AC/DC
- LE110 110 V AC $\pm 15 \%$
LE220 220 V AC $\pm 15 \%$

Series GLBF... mechanical
Plunger spacing 12 or 16 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639
3) For safety reasons, multiple limit switches with switching elements ES 508 and ES 514 are not available with ball plungers 4) Plunger type on request

Number of plungers/ proximity switches	Plunger/proximity switch spacing								Housing material
	$I_{1}=12$				$I_{1}=16$				
	I_{2}	I_{3}	I_{4}	Cable entry	I_{2}	I_{3}	I_{4}	Cable entry	
2	84	66	52	$\begin{gathered} \text { A } \\ \mathrm{M} 25 \times 1.5 \end{gathered}$	84	66	52	$\begin{gathered} \mathrm{A} \\ \mathrm{M} 25 \times 1.5 \end{gathered}$	Sand-cast aluminum, anodized
3	84	66	52		100	82	68		
4	100	82	68		114	98	84	$\begin{gathered} B+C \\ \text { M } 25 \times 1.5 \end{gathered}$	
5	114	98	84	$\begin{gathered} B+C \\ M 25 \times 1.5 \end{gathered}$	132	114	100		
6	132	114	100		148	130	116		
8	148	130	116		180	162	148		
10	180	162	148		212	194	180		
12	199	178	167		244	226	212		
14	228	210	196		276	258	244		
16	244	226	212		308	290	276		
18	276	258	244		340	322	308		
20	308	290	276		-	-	-	-	

[^2]
Series GLBF... 12/16 mm inductive (on request)

Proximity switch spacing 12 or 16 mm
Horizontal housing

- Degree of protection IP67 according to IEC 60529
LED function display

Rated operating distance

With 12 mm proximity switch spacing and 16 mm proximity switch spacing, the rated operating distance for this multiple limit switch is 2 mm .

LED function display

$D C$ and $A C$ switching elements are equipped as standard with a function display on the switching element (yellow). The function display can be seen from the exterior.

Series GLBF... inductive
Proximity switch spacing 12 or 16 mm

Switching elements

Further switching elements on request (see page 32/33)

Number of plungers/proximity switches

Plunger type (only mechanical switch, e. g. D = chisel)

Plunger/proximity switch spacing (12 or 16 mm)

Switching elements
(e. g. ES 508 or 777)

Visible LED yellow
(on inductive switches)
LED function display (optional on
mechanical switches, e. g.
$12 . . .60 \mathrm{~V} \mathrm{AC} / \mathrm{DC}=060$)
LED color; red standard (rt),
others on request

Mechanical

Inductive

Series GLBF... 8 mm mechanical

- Plunger spacing 8 mm

Horizontal housing
Degree of protection IP67 according to IEC 60529

Switching elements

- ES 552 Snap-action switching element 1 changeover contact Standard switching element
(See technical data on the switching elements)

Series GLBF... mechanical
Plunger spacing 8 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639
3) Plunger type on request

$\stackrel{n}{\boldsymbol{n}}$ Number of plungers/proximity switches	Plunger/proximity switch spacing 8 mm			Housing material
	I_{1}	I_{2}	I_{3}	
2	64	50	39	Sand-cast aluminum, anodized
3	80	66	55	
4	80	66	55	
5	96	82	71	
6	96	82	71	
8	112	98	87	
10	128	114	103	
12	144	130	119	

[^3]
Series GLBF... 8 mm inductive (on request)

Proximity switch spacing 8 mm
Horizontal housing
Degree of protection IP67 according to IEC 60529

Rated operating distance

With 8 mm proximity switch spacing, the rated operating distance is 1 mm .

Series GLBF... inductive
Proximity switch spacing 8 mm

Dimension drawing

Switching elements

Further switching elements on request (see page 32/33)

Ordering code
On request
Series

Number of plungers/proximity switches

Plunger type (only mechanical switch, e. g. D = chisel)

Plunger/proximity switch spacing (8 mm)

Switching element (e. g. 785)

Cable entry M20 x 1.5

Series RGBF...AM 12 mm mechanical

- With exterior diaphragm
- Plunger spacing 12 mm
- Upright housing according to DIN 43697
- Degree of protection IP67 according to IEC 60529

Exterior diaphragm

The exterior diaphragm protects the plunger guide against the entry of very fine dust (dust from grinding casting, glass, etc.) and prevents the plunger seizing. At the same time, plunger sticking, caused by resinous lubricating coolants, can be prevented by this exterior diaphragm version.

Switching elements

- ES 502 E Snap-action switching element 1 NC + 1 NO
ES 514 Snap-action switching element $1 \mathrm{NC} \Theta+1$ NO

LED function display possible on request.

Series RGBF... AM mechanical

Plunger spacing 12 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639

n	Plunger spacing 12 mm	
Number of plungers	I_{1}	Housing material
2	70	Die-cast aluminum, anodized
3	80	
4	90	
5	105	
6	120	
8	140	
Plunger type	Number of plungers	
		Order No./Item
	2	$\begin{array}{cc} 082 \mathbf{3 2 5} \\ \text { RGBF 02 D 12 } & -502 \mathrm{AM}-\mathrm{M} \\ \hline \end{array}$
	3	$\begin{gathered} 088 \quad 365 \\ \text { RGBF } 03 \mathrm{D} \quad 12-502 \mathrm{AM}-\mathrm{M} \\ \hline \end{gathered}$
	4	$\begin{gathered} 082326 \\ \text { RGBF } 04 \text { D } 12-502 \text { AM -M } \\ \hline \end{gathered}$
	5	$\begin{gathered} 088 \quad 366 \\ \text { RGBF } 05 \text { D } 12 \text {-502 AM -M } \end{gathered}$
	6	$\begin{gathered} 087097 \\ \text { RGBF } 06 \text { D } 12-502 \text { AM -M } \\ \hline \end{gathered}$
	8	$\begin{gathered} 087 \quad 135 \\ \text { RGBF 08D 12-502 AM -M } \\ \hline \end{gathered}$
	2	087 098 RGBF 02 R 12-502 AM -M
	3	088364 RGBF 03 R $12-502$ AM -M
	4	$\begin{gathered} 082327 \\ \text { RGBF } 04 \text { R } 12-502 \text { AM -M } \end{gathered}$
	5	
	6	$\mathbf{0 8 7} 100$ RGBF 06 R 12 -502 AM -M
	8	$\begin{array}{r} 085730 \\ \text { RGBF } 08 \mathrm{R} 12-502 \mathrm{AM}-\mathrm{M} \\ \hline \end{array}$

Series SN...AM 12 mm mechanical

- With exterior diaphragm

Plunger spacing 12 mm
Upright housing, small flange
Degree of protection IP67 according to IEC 60529

Exterior diaphragm

The exterior diaphragm protects the plunger guide against the entry of very fine dust (dust from grinding casting, glass, etc.) and prevents the plunger seizing. At the same time, plunger sticking, caused by resinous lubricating coolants, can be prevented with this exterior diaphragm version.

Switching elements

ES 502 E Snap-action switching element 1 NC + 1 NO

LED function display possible on request.

Series SN...AM mechanical
Plunger spacing 12 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639

n	Plunger spacing 12 mm		
Number of plungers	I_{1}	I_{2}	Housing material
2	36	19	Die-cast aluminum, anodized
3	48	24	
4	60		
5	72		
6	84		
Plunger type	Number of plungers		Order No./Item
	2		$\begin{gathered} 086584 \\ \text { SN } 02 \text { D } 12-502 \text { AM -M } \\ \hline \end{gathered}$
	3		$\begin{aligned} & 086585 \\ & \text { SN } 03 \text { D } 12-502 \text { AM -M } \end{aligned}$
	4		$\begin{gathered} 086586 \\ \text { SN } 04 \text { D } 12-502 \text { AM -M } \end{gathered}$
	5		$\begin{array}{r} 088752 \\ \text { SN } 05 \text { D } 12-502 \text { AM -M } \end{array}$
	6		$\begin{gathered} 088753 \\ \text { SN } 06 \mathrm{D} 12-502 \mathrm{AM}-\mathrm{M} \\ \hline \end{gathered}$
	2		$\begin{aligned} & 079289 \\ & \text { SN } 02 \text { R } 12-502 \text { AM -M } \end{aligned}$
	3		$\begin{aligned} & 086587 \\ & \text { SN } 03 \text { R } 12-502 \text { AM -M } \end{aligned}$
	4		$\begin{aligned} & 086588 \\ & \text { SN } 04 \text { R } 12-502 \text { AM -M } \end{aligned}$
	5		088765 SN 05 R 12-502 AM -M
	6		$\mathbf{0 8 8} \mathbf{7 6 6}$ SN 06 R 12-502 AM -M

Series RGCS... 12 mm mechanical

- With interchangeable plunger guide
- Plunger spacing 12 mm
- Upright housing according to DIN 43697
- Degree of protection IP67 according to IEC 60529

Interchangeable plunger guide in case of damage or wear
The interchangeable plunger guide facilitates quick and easy plunger replacement without readjustment of the multiple limit switch. Expensive wiring effort is not required. The result is the shortest possible interruptions to production.

Features

- Plunger guide made of special material
- Can be dismantled from the plunger side
- Complete plunger guide can be interchanged

Switching elements

- ES 502 E Snap-action switching element

$$
1 \mathrm{NC}+1 \mathrm{NO}
$$

LED function display (optional)

Function displays are available for the following voltage ranges (see accessories page 27):

- LE060ge 12 ... 60 V AC/DC

Series RGCS... mechanical
Plunger spacing 12 mm

Dimension drawing illustration with chisel plunger, plunger type dependent on version

Switching elements

1) The reproducible operating point accuracy refers to the axial travel of the plunger after the switching element ES 502 E has been run-in with approx. 2000 operating cycles
2) The approach speed specified applies in conjunction with EUCHNER trip dogs according to DIN 69639

n	Plunger spacing 12 mm	
Number of plungers	I_{1}	Housing material
2	70	Die-cast aluminum, anodized
3	80	
4	90	
5	105	
6	120	
8	140	

Plunger type	Number of plungers	Order No./Item	
		Without LED	LE060ge
	2	$\begin{array}{ll} 087452 \\ \text { RGCS } 02 \text { D 12-502-M } \\ \hline \end{array}$	$\mathbf{0 8 7} \mathbf{5 0 0}$ RGCS 02 D 12 -502 LE060GE -M
	3	$\begin{gathered} 087453 \\ \text { RGCS 03 D 12-502-M } \\ \hline \end{gathered}$	$\begin{array}{cc} 087501 \\ \text { RGCS } 03 \text { D } & 12-502 \text { LE060GE -M } \\ \hline \end{array}$
	4	$\begin{aligned} & 087454 \\ & \text { RGCS } 04 \text { D 12-502-M } \\ & \hline \end{aligned}$	$\begin{gathered} 087502 \\ \text { RGCS } 04 \text { D } 12-502 \text { LE060GE -M } \\ \hline \end{gathered}$
	5	$\begin{aligned} & 087455 \\ & \text { RGCS } 05 \text { D 12-502-M } \end{aligned}$	$\begin{gathered} 087503 \\ \text { RGCS } 05 \text { D } 12-502 \text { LE060GE -M } \\ \hline \end{gathered}$
	6	$\begin{gathered} 087456 \\ \text { RGCS } 06 \mathrm{D} 12-502-\mathrm{M} \\ \hline \end{gathered}$	$\begin{array}{cc} 087504 \\ \text { RGCS } 06 \mathrm{D} & 12-502 \text { LE060GE -M } \\ \hline \end{array}$
	8	$\begin{aligned} & 087457 \\ & \text { RGCS } 08 \text { D 12-502-M } \end{aligned}$	$\begin{gathered} 087505 \\ \text { RGCS } 08 \text { D 12-502 LE060GE -M } \\ \hline \end{gathered}$
Roller plunger	2	$\begin{array}{r} 087459 \\ \text { RGCS } 02 \text { R } 12-502-\mathrm{M} \\ \hline \end{array}$	$\begin{gathered} \mathbf{0 8 7 5 0 6} \\ \text { RGCS } 02 \text { R } 12-502 \text { LE060GE -M } \\ \hline \end{gathered}$
	3	$\begin{gathered} 087460 \\ \text { RGCS } 03 \text { R 12-502-M } \end{gathered}$	$\begin{gathered} 087507 \\ \text { RGCS } 03 \text { R } 12-502 \text { LE060GE -M } \\ \hline \end{gathered}$
	4	$\begin{gathered} 087461 \\ \text { RGCS } 04 \text { R 12-502-M } \end{gathered}$	$\begin{gathered} 087508 \\ \text { RGCS } 04 \text { R } 12 \text {-502 LE060GE -M } \\ \hline \end{gathered}$
	5	$\begin{gathered} 087462 \\ \text { RGCS } 05 \text { R 12-502-M } \end{gathered}$	$\begin{gathered} 087509 \\ \text { RGCS } 05 \text { R 12-502 LE060GE -M } \\ \hline \end{gathered}$
	6	$\begin{array}{r} 087463 \\ \text { RGCS } 06 \text { R } 12-502-\mathrm{M} \\ \hline \end{array}$	$\begin{gathered} \mathbf{0 8 7 5 1 0} \\ \text { RGCS } 06 \text { R } 12-502 \text { LE060GE -M } \end{gathered}$
	8	$\begin{gathered} 087464 \\ \text { RGCS } 08 \text { R 12-502-M } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 8 7 5 1 1} \\ \text { RGCS } 08 \text { R } 12-502 \text { LE060GE -M } \\ \hline \end{gathered}$

Accessories for mechanical multiple limit switches

- LED function display

LED function display

Three versions in various voltage ranges are available in the standard colors red, green and yellow.
The built-in electronic regulation (LE060 only) ensures that the luminosity remains constant, independent of the voltage applied.

LED function display

Figure

Ordering table

Designation	Operating voltage [V]	Color	Order No. / Item
LED function display ${ }^{1 /}$	AC/DC 12-60	Red	$\begin{aligned} & 035495 \\ & \text { LE } 060 \text { rt } \end{aligned}$
		Green	On request LE 060 gr
		Yellow	$\begin{aligned} & 035497 \\ & \text { LE } 060 \text { ge } \end{aligned}$
	AC $110 \pm 15 \%$	Red	$\begin{aligned} & 045579 \\ & \text { LE } 110 \mathrm{rt} \\ & \hline \end{aligned}$
		Green	On request LE 110 gr
		Yellow	On request LE 110 ge
	AC $220 \pm 15 \%$	Red	$\begin{aligned} & 045582 \\ & \text { LE } 220 \mathrm{rt} \end{aligned}$
		Green	On request LE 220 gr
		Yellow	On request LE 220 ge

1) If color not stated, red will be supplied as standard

- Mechanical replacement switching elements

Replacement switching elements

Replacement switching elements for multiple limit switches with 8,12 and 16 mm plunger spacing.

The safety switching elements ES 508 and ES 514 are not allowed to be replaced for safety reasons and are therefore not available as spare parts.
In safety circuits, the entire multiple limit switch must be replaced in case of damage or wear. Repairs must be performed only by the manufacturer.

Replacement switching elements

Figure

ES 502 E

ES 552/ES 614

Ordering table

Designation	Order No. / Item
Replacement switching elements	$\begin{aligned} & 010387 \\ & \text { ES } 502 \text { E } \\ & \hline \end{aligned}$
	$\begin{gathered} 099513 \\ \text { ES } 552 \end{gathered}$
	$\begin{gathered} 099507 \\ \text { ES } 614 \end{gathered}$

Multiple Limit Switches

EUCHNER

Accessories for inductive multiple limit switches

Inductive replacement switching elements

The switching elements used for all inductive multiple limit switches supplied are available as spare parts

Ordering table

Designation	Function	Order No.
ES785	NO contact/PNP	008054
ES786	NO contact/PNP	008055
ES787	NO contact/NPN	On request
ES788	NC contact/NPN	On request
ES777	NO contact/PNP	008401
ES781	NO + NC/PNP	031535
ES780	NO + NC/NPN	031534
ES779 ${ }^{11}$	NO contact/PNP	008470
ES779/2 ${ }^{1)}$	NO contact/PNP	036731
ES772 ${ }^{11}$	NO + NC/PNP	053674
ES772/2 ${ }^{11}$	NO + NC/PNP	053677
ES771 ${ }^{11}$	NO + NC/NPN	053685
ES771/2 ${ }^{1)}$	NO + NC/NPN	053688
ES790	NO contact/DC-2-wire ${ }^{2)}$	On request
ES791	NC contact/DC-2-wire ${ }^{2)}$	On request
ES700 ${ }^{11}$	NO contact/DC-2-wire ${ }^{2)}$	On request
ES700/2 ${ }^{1)}$	NO contact/DC-2-wire ${ }^{2 /}$	On request
ES701 ${ }^{\text {1) }}$	NC contact/DC-2-wire ${ }^{2 /}$	On request
ES701/2 ${ }^{1)}$	NC contact/DC-2-wire ${ }^{2)}$	On request
ES750	NO contact/AC-2-wire	010457
ES751	NC contact/AC-2-wire	On request
ES755 ${ }^{11}$	NO contact/AC-2-wire	014125
ES755/2 ${ }^{1)}$	NO contact/AC-2-wire	023902
ES756 ${ }^{11}$	NC contact/AC-2-wire	On request
ES756/2 ${ }^{1)}$	NC contact/AC-2-wire	On request
ES789	According to NAMUR	On request
ES796	According to NAMUR	On request
ES797 ${ }^{11}$	According to NAMUR	On request
ES797/2 ${ }^{1)}$	According to NAMUR	On request

1) Switching elements with 5 mm operating distance (proximity switch spacing 16 mm) are supplied with two different oscillator frequencies to avoid mutual interference. Multiple limit switches must therefore be assembled alternately with these switching elements.
2) DC-2-wire switching elements are not suitable for inductive loads.

Separate connector bridge

Separate connector bridge

A separate connector bridge is available for making an electrical connection between individual inductive switching elements with a common operating voltage.

Separate connector bridge

Ordering table

Designation	Use	I_{1}	$\begin{gathered} \boldsymbol{n} \\ \text { (Number) } \end{gathered}$	Order No. / Item
Separate connector bridge	Inductive multiple limit switch	12	20	017130 Bridge 12 mm spacing
		16	16	017131 Bridge 16 mm spacing

Cable glands

```
M16 x 1.5
M20 x 1.5
M25 x 1.5
```


Cable glands

Cable glands

Suitable for various cable diameters. Versions in metal.

Ordering table

Thread	Version	Order No. / Item
M16 x 1.5	Cable diameter $4-6.5 \mathrm{~mm}$	$\begin{gathered} 086328 \\ \text { EKVM16/04 } \end{gathered}$
	Cable diameter $5-8 \mathrm{~mm}$	$\begin{gathered} 086329 \\ \text { EKVM16/05 } \\ \hline \end{gathered}$
	Cable diameter $6.5-9.5 \mathrm{~mm}$	$\begin{gathered} 086330 \\ \text { EKVM16/06 } \\ \hline \end{gathered}$
M20 x 1.5	Cable diameter $6.5-9.5 \mathrm{~mm}$	$\begin{gathered} 077683 \\ \text { EKVM20/06 } \end{gathered}$
	$\begin{gathered} \text { Cable diameter } \\ 9-13 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 077684 \\ \text { EKVM20/09 } \end{gathered}$
M25 x 1.5	$\begin{gathered} \text { Cable diameter } \\ 9-13 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 086334 \\ \text { EKVM25/09 } \end{gathered}$
	Cable diameter $11.5-15.5 \mathrm{~mm}$	$\begin{gathered} 086335 \\ \text { EKVM25/11 } \end{gathered}$

Plug connector on request.

Multiple limit switches mechanical

Parameter	Value					Unit
Switching elements ES	502 E	508	514	552	614	
Degree of protection acc. to EN IEC 60529	IP67					
Installation position	Any					
Plunger material	Stainless steel					
Plunger guide	Maintenance-free					
Ambient temperature	$-5 \ldots+80$					${ }^{\circ} \mathrm{C}$
Contact elements	$1 \mathrm{NO}+1 \mathrm{NC}$	1 NC	1 NO + 1 NC	1 changeover contact		
Switching principle	Snap-action sw. element	Slow-action sw. element	Snap-action switching element			
Actuating force	≥ 20	≥ 15	≥ 30	≥ 15		N
Approach speed, min.	0.01	-	0.01			$\mathrm{m} / \mathrm{min}$
Differential travel	0.8	-	0.6	0.1		mm
Switching frequency	≤ 300	≤ 50		≤ 200		min^{-1}
Mechanical life (operating cycles)	$\geq 30 \times 10^{6}$		$\geq 1 \times 10^{6}$	$\geq 10 \times 10^{6}$		
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	4			2.5		kV
Rated insulation voltage U_{i}	250					V
Utilization category according to EN IEC AC-12 60947-5-1	$\begin{array}{r} \mathrm{I}_{\mathrm{e}} 10 \mathrm{~A} \\ \mathrm{U}_{\mathrm{e}} 250 \mathrm{~V} \\ \hline \end{array}$	-	-	-	-	
AC-15	$1 \mathrm{e} 6 \mathrm{~A} \mathrm{U} \mathrm{e}^{2} 230 \mathrm{~V}$		$\mathrm{I}_{\mathrm{e}} 2.5 \mathrm{~A} \mathrm{U} 230 \mathrm{~V}$	1 e 2 A U 230 V	-	
DC-13	$1 \mathrm{e} 6 \mathrm{~A} \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$			$\mathrm{I}_{\mathrm{e}} 2 \mathrm{~A} \mathrm{U} \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$	$\mathrm{I}_{\mathrm{e}} 1 \mathrm{~A} \mathrm{U}_{\mathrm{e}} 30 \mathrm{~V}$	
Switching current min. At switching voltage	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 10 \\ & 24 \end{aligned}$	$\begin{gathered} 5 \\ 24 \end{gathered}$	$\begin{aligned} & 10 \\ & 24 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \text { DC } \end{gathered}$
Conventional thermal current $\mathrm{I}_{\text {th }}$	10			6	2	A
Contact closing time	< 4	-	≤ 5	-		ms
Contact bounce time	< 3	-	≤ 3	≤ 2		ms
Short circuit protection according to EN IEC 60269-1 (control circuit fuse)	10			6	2	A gG
Connection type	Screw terminal					
Conductor cross-section, max.	$0.34 \ldots 1.5$			$0.14 \ldots 1.0$		mm^{2}
Approvals for switching elements	${ }_{\mathrm{c}} \mathrm{M}_{\text {us }}$	-	©(4L)	感15	-	
LED function display (optional)	Red standard, others on request		LE024ge	-		

Travel diagram	Snap-action switching element according to DIN 43695 with one NO and one NC contact. Double gap, electrically isolated
ES 502 E	switching elements, silver contact, electro-gold plated. Screw terminal with self-raising clamp washers.

Travel diagram
 ES 508

Slow-action switching element with one positively driven NC contact. Double gap, silver contact, electro-gold plated. Screw terminal with self-raising clamp washers.

Travel diagram Magnetic snap-action switching element with one positively driven NC contact and one NO contact. Double gap, electrically ES 514 isolated switching elements, silver contact, electro-gold plated. Screw terminal with self-raising clamp washers.

Multiple limit switches inductive

Parameter	Value										Unit
Switching element ES	785	786	787	788	777	781	780	$\begin{gathered} 779{ }^{11} \\ 779 / 2 \end{gathered}$	$\begin{gathered} 7722^{11} \\ 772 / 2 \end{gathered}$	$\begin{gathered} 771^{11} \\ 771 / 2 \end{gathered}$	
Proximity switch spacing	8				12			12			mm
Rated operating distance S_{n}	1				2			5			mm
Assured operating distance S_{a}	$0 \ldots 0.8$				0 ... 1.6			$0 \ldots 4$			mm
Switching function	NO contact	NC contact	$\begin{gathered} \text { NO } \\ \text { contact } \end{gathered}$	NC contact	NO contact	NO + NC		NO contact	NO + NC		
Output	PNP		NPN		PNP		NPN	PNP		NPN	
LED function display	Yes										
Operating voltage U_{B}	DC $10 \ldots 30$				DC $10 \ldots 55$						V
Permissible residual ripple s	≤ 10										\%
Voltage drop U_{d}	≤ 2.5										V
Rated insulation voltage U_{i}	DC 60										V
Rated operating current I_{e}	250										mA
Off-state current I_{r}	≤ 0.05				≤ 0.001						mA
No-load current I_{0}	≤ 15										mA
Short circuit and overload protection, pulsed	Yes										
Reverse polarity protection	Yes										
EMC compliance as per	EN IEC 60947-5-2										
Hysteresis H (in installed state)	≤ 0.1				≤ 0.2			≤ 0.5			mm
Repeat accuracy R	≤ 5										\%
Switching frequency f	≤ 500										Hz
Utilization category according to EN IEC 60947-5-2	DC-13										
Housing material	PBT glass-fiber reinforced										
Material active face	PBT										
Ambient temperature T	$-25 \ldots+70$										${ }^{\circ} \mathrm{C}$
Connection type	Connection terminals										
Conductor cross-section, max.	1.5										mm^{2}

1) Switching elements with 5 mm operating distance (proximity switch spacing 16 mm) are supplied with two different oscillator frequencies to avoid mutual interference. Multiple limit switches must therefore be assembled alternately with these switching elements.
When ordering single elements, please prefix the part number with ES. E.g. Switching element ES 781
Gray figures on request

Wiring diagrams

DC NO, PNP 785, $I_{1}=8 \mathrm{~mm}$ $777, I_{1}=12 \mathrm{~mm}$ $779, I_{1}=16 \mathrm{~mm}$		DC NC, PNP $786, I_{1}=8 \mathrm{~mm}$		DC NO, NPN $787,1_{1}=8 \mathrm{~mm}$		DC NC, NPN $788, I_{1}=8 \mathrm{~mm}$	$\begin{gathered} \text { DC NO + NC, PNP } \\ 781, I_{1}=12 \mathrm{~mm} \\ 772, I_{1}=16 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { DC NO }+ \text { NC, NPN } \\ 780, I_{1}=12 \mathrm{~mm} \\ 771, I_{1}=16 \mathrm{~mm} \end{gathered}$	
	\|1				$\stackrel{I}{\\|}$				
$\begin{gathered} \text { AC NO } \\ 750, l_{1}=12 \mathrm{~mm} \\ 755, l_{1}=16 \mathrm{~mm} \end{gathered}$		AC NC 1, $l_{1}=12 \mathrm{~mm}$ 6, $l_{1}=16 \mathrm{~mm}$		2-wire, NO (PNP/ NPN) 90, $I_{1}=12 \mathrm{~mm}$ 00, $I_{1}=16 \mathrm{~mm}$		-2-wire, NC (PNP/ NPN) 791, $I_{1}=12 \mathrm{~mm}$ 701, $L_{1}=16 \mathrm{~mm}$	According to NAMUR $\begin{aligned} & 789, l_{1}=8 \mathrm{~mm} \\ & 796, I_{1}=12 \mathrm{~mm} \\ & 797, I_{1}=16 \mathrm{~mm} \end{aligned}$		
	$\begin{array}{\|l\|} \hline \mathrm{I} \\ \overleftrightarrow{1} \mid \end{array}$								

1) Switching elements with 5 mm operating distance (proximity switch spacing 16 mm) are supplied with two different oscillator frequencies to avoid mutual interference. Multiple limit switches must therefore be assembled alternately with these switching elements.
2) $D C$-2-wire switching elements are not suitable for inductive loads

When ordering single elements, please prefix the part number with ES. E.g. Switching element ES 781
Gray figures on request

Selection table for trip rails

Trip rails with $8 \mathrm{~mm}, 12 \mathrm{~mm}$ or 16 mm spacing

Series UFA...

Slot spacing 8 mm , aluminum

Dimension drawing

Minimum order $2010 \mathrm{~mm}, 1$ bar

Series ULA... according to DIN 69638 form A Slot spacing 12 mm , aluminum

Dimension drawing

Dimension a [mm]	29	41	53	65	77
Number of slots	2	3	4	5	6

Minimum order 2010 mm, 1 bar

Series UL... can be placed in a row Slot spacing 12 mm , aluminum

Dimension a [mm]	24	36	48
Number of slots	2	3	4

Preferable lengths 1000, 2000, 3000 and 4000 mm (preferable lengths correspond to minimum order)

Series UL... can be placed in a row Slot spacing 16 mm , aluminum

Preferable lengths 1000, 2000, 3000 and 4000 mm (preferable length correspond to minimum order)

Series UF...

Slot spacing 8 mm , cast iron

Dimension a [mm]	44	52	60	68	76	92
Number of slots	2	3	4	5	6	8
Dimension a [mm]	108	124	140	156	172	188
Number of slots	10	12	14	16	18	20

Length to suit customer requirement, max. 1000 mm Gray figures on request

Series UF... according to DIN 69638 form A Slot spacing 12 mm , cast iron

Dimension a [mm] 50 62 74 86 98 122 Number of slots 2 3 4 5 6 8 Dimension a $[\mathrm{mm}]$ 146 170 194 218 Number of slots 10 12 14 16 Length to suit customer requirement, max. 1000 mm Gray figures on request

Series UF... according to DIN 69638 form A Slot spacing 16 mm , cast iron

Dimension a [mm]	54	70	86	102	118	150
Number of slots	2	3	4	5	6	8
Dimension a [mm]	182	214				
Number of slots	10	12				
Length to suit customer requirement, max. 1000 mm Gray figures on request						

Ordering code

Series

Number of slots (see tables)

Slot spacing (8, $\mathbf{1 2}$ or $\mathbf{1 6} \mathbf{m m}$)
Length [mm] (note minimum order/preferable length)

Trip dogs for trip rails with $8 \mathrm{~mm}, 12 \mathrm{~mm}$ or 16 mm spacing

Type of actuation mechanical

Series U8...

for 8 mm slot spacing, hardened, ground steel

Series U1216... according to DIN 69639 form UA/UB for 12 or 16 mm slot spacing, hardened, ground steel

Type of actuation inductive

Series UX8...
for 8 mm slot spacing, black painted steel

$\boldsymbol{I}_{\mathbf{1}}$	Figure
6	1
10	1
16	1
25	2
40	2
63	2
100	2

Series UX1216...
for 12 or 16 mm slot spacing, black painted steel

Figure 1

Figure 2

$\boldsymbol{I}_{\mathbf{1}}$	Figure
10	1
16	1
25	2
40	2
63	2
100	2
125	2

Ordering code

\square
Series

Length I_{1}

Special trip dogs for trip rails with 12 mm or 16 mm spacing

Type of actuation mechanical

- Safety dog

- Fine adjustment dog
- Fine adjustment dog with micrometer

Safety dog UZ

For limit switches with safety function the safety dog must be positively mounted

Fine adjustment dog UE

The fine adjustment dog UE1216-4 can be mounted in all U-trip rails with 12 or 16 mm slot spacing. The fine adjustment is made using a self-locking hexagon socket head screw

Fine adjustment dog with micrometer

The fine adjustment dog UEN1216/UEG1216 can be mounted in all U-trip rails with 12 or 16 mm slot spacing. After clamping the micrometer UEG1216, the fine adjustment dog UEN1216 can be moved to the required dimension by turning the micrometer screw.
The fine adjustment dog is clamped after adjustment as required.
The micrometer can be removed from the trip rail for further use after undoing the clamping screw, or it can be left in the trip rail.
The micrometer UEG1216 must be used for adjusting fine adjustment dogs UEN1216.

Safety dog UZ for $12 / 16 \mathrm{~mm}$ slot spacing, hardened, ground steel

Dimension drawing UZ1216-50

(9)

Fine adjustment dog for $12 / 16 \mathrm{~mm}$ slot spacing, hardened, ground steel

Dimension drawing UEN1216

Fine adjustment dog UE $12 / 16 \mathrm{~mm}$ for slot spacing, hardened, ground steel

Dimension drawing UE1216-4

Adjustment range $[\mathrm{mm}]$	4
Graduation $\geqslant \mathbb{K}[\mathrm{mm}]$	0.02

Micrometer for fine adjustment dog UEN1216, mat, chromium-plated steel

Dimension drawing UEG1216

Ordering table

Designation	Use	Order No. / Item
Safety dog UZ	For trip rails ULA/UL/UF 12 or 16 mm	$\begin{gathered} \hline 022734 \\ \text { UZ1216-50 } \\ \hline \end{gathered}$
Fine adjustment dog UE	For trip rails ULA/UL/UF 12 or 16 mm	$\begin{aligned} & 013340 \\ & \text { UE1216-4 } \end{aligned}$
Micrometer UEG	For fine adjustment dog UEN1216	$\begin{aligned} & 013338 \\ & \text { UEG1216 } \end{aligned}$
Fine adjustment dog UEN	For micrometer UEG1216 For trip rails ULA/UL/UF 12 or 16 mm	013339 UEN1216

G-trip rails with $\mathbf{1 2 ~ m m}$ or $\mathbf{1 6 ~ m m ~ s p a c i n g ~}$

G-trip rails GF... according to DIN 69638 form C,
fully assembled, galvanized steel

G-trip rail, fully assembled
Ordering code
Series
Number of slots (see table)

Ordering code

 G-trip rail GF...G-trip rail GFE.../GFR... according to DIN 69638 form C, kit for self-assembly, galvanized steel

Guide tubes GFR...

Preferable lengths 1000,1500 and 2000 mm

For assembly instructions see page 43

Slot spacing ($\mathbf{1 2}$ or $\mathbf{1 6 ~ m m}$) \qquad

Length I * [mm] (note maximum length)

Kit for self-assembly

Ordering code

Series

Number of slots (see table)

Slot spacing (12 or $\mathbf{1 6 ~ m m}$)
Length I * [mm] (note preferable
length)

* For lengths over 600 mm , support brackets are required (see page 42)

Trip dogs for G-trip rails with 12 mm or 16 mm spacing

Type of actuation mechanical

Series G1216.... according to DIN 69639 form G for G-trip rails GF, hardened, ground steel

Dimension drawing

Figure 2

$\boldsymbol{I}_{\mathbf{1}}$	Figu- re	DIN/form
0	1	G
4	2	G
10	2	G
16	2	G
25	2	G
40	2	G
63	3	G
100	3	G

Figure 3

Ordering code

Series

Length I_{1}

Special trip dogs for G-trip rails with 12 mm or 16 mm spacing

Type of actuation mechanical

Fine adjustment dog for G-trip rails GF, hardened, ground steel

Dimension drawing GE1216-0

The fine adjustment dog GE1216-0 can be mounted in the G-trip rails with 12 or 16 mm slot spacing. The fine adjustment is made using a selflocking hexagon socket head screw.

Fine adjustment dog with micrometer

The fine adjustment dog GEN1216-63/GEX1216-40 can be mounted in the G-trip rails with 12 or 16 mm slot spacing. The fine adjustment is made using a knurled screw.

Fine adjustment dog with micrometer for trip rails GF, hardened, ground steel

Dimension drawing GEN 1216-63

Adjustment range [mm] 8

Type of actuation inductive

Fine adjustment dog for micrometer for trip rails GF, black painted steel

Dimension drawing GEX1216-40

Ordering table

Designation	Type of actuation		Use
Fine adjustment dog	Mechanical	For G-trip rails GF	Order No. / Item
Fine adjustment dog		012 or 16 mm	
with			
Micrometer			

Accessories

Clamping piece

- Support brackets

Clamping piece

The trip rails ULA and UFA made of aluminum are preferably fastened to the body of the machine using special clamping pieces.

Support brackets, can be placed in a row

 For the G-trip rails GFE/GFR kit, support brackets must be used from a length of 600 mm .Clamping piece
for trip rails ULA/UFA
Dimension drawing

Support brackets slot spacing 12 mm for G-trip rail GFE/GFR

Support brackets slot spacing 16 mm for G-trip rail GFE/GFR

Ordering table

Designation	Use	Slot spacing [mm]	Number of guide tubes	Order No. / Item
Clamping piece	For trip rails ULA/UFA	-		$\begin{gathered} 025519 \\ \text { Clamping piece } \end{gathered}$
Support brackets	For G-trip rails GFE/GFR	12 mm	2	$\begin{aligned} & 027459 \\ & \text { ZW02-12 } \end{aligned}$
			3	$\begin{aligned} & 027460 \\ & \text { ZW03-12 } \\ & \hline \end{aligned}$
		16 mm	2	$\begin{aligned} & 027461 \\ & \text { ZW02-16 } \\ & \hline \end{aligned}$
			3	$\begin{aligned} & 027462 \\ & \text { ZW03-16 } \end{aligned}$

Installation notes

Trip rail system-G kit for self-assembly
A kit comprises two end pieces, the pressure segments and the related number of guide tubes.
All parts are protected against corrosion by a special surface treatment.
The kit enables the user to assemble trip rails of the required length (from 600 mm special support brackets are required) of up to 2000 mm . For this purpose the guide tubes are cut to the required length and bolted together to form a trip rail with the aid of the end pieces (see example).

Glossary

Ambient temperature T

The ambient temperature is the temperature range in which the reliable operation of the inductive switching element is guaranteed. This range is between -25 and $+70^{\circ} \mathrm{C}$.

Assured operating distance s_{a}

The assured operating distance is the operating distance at which correct operation of the inductive switching element is guaranteed within the permissible operating conditions (temperature and voltage).
The actuation distance lies between 0 and 81% of the rated operating distance S_{n}.

Degree of protection

The degree of protection is defined according to EN 60529-1 and is given as an IP. After the IP there are two digits; the first digit gives the degree of protection against the penetration of solid foreign bodies and the second digit gives the degree of protection against the penetration of liquids.

Hysteresis H

The hysteresis is the difference in distance terms between the ON point as the test plate approaches and the OFF point as it moves away from the active face of the inductive switching element.

Inrush current I_{k}

The inrush current is the maximum current which can flow in an AC-2-wire switching element for a particular period at the moment it is switched on. The details in the technical data are valid for 20 ms .

Minimum operating current I_{m}

The minimum operating current is the minimum current required for the function of a 2 -wire switching element in active energized condition.

Off-state current I_{r}

The off-state current is the current which flows in the load circuit of an inductive DC-2-wire switching element in the non-conducting condition. In practical terms, this current has to be taken into account only for 2-wire switching elements.

Operating voltage \mathbf{U}_{B}

The operating voltage defines the voltage range in which the inductive switching element functions reliably. The specified values represent limits without any tolerances. The values can be obtained by referring to the technical data for the switching element. In the case of two-wire switching elements, this is applicable only in series connection with the load.

Short-circuit and overload protection

The inductive switching elements are designed so that short circuits cannot damage the outputs. Pulsed short circuit protection is used.
This means that the output transistor is switched off and on again in quick succession in the event of overloading or a short-circuit. In this way, it is possible to establish whether the fault is still present or has been rectified.

Slow-action contact element

A slow-action contact element is characterized by the opening of the switching element as a function of the speed at which the plunger is moved.

Snap-action contact element

On snap-action contact elements the switching element jumps to the other switch state from a defined plunger position. The movement of the contact element is independent of the speed at which the actuator is moved. Snap-action contact elements typically have hysteresis.

Switching elements

Switching elements are used in mechanical limit switches. Switching elements are available with a normally closed function, a normally open function and as positively driven contacts. EUCHNER supplies switching elements with one or two contacts for the various switch types. Switching elements can be *slow-action contact elements or *snap-action contact elements.

Switching frequency f

The switching frequency is the maximum possible number of switching operations per second. This is determined according to IEC 60947-5-2 and is based on a mark-space ratio of $1: 2$. The switching frequency is a switch-specific variable and can be obtained by referring to the technical data for the switching element.

Transient protection

EUCHNER proximity switches are protected against interference caused by the occurrence of inductive voltage peaks in accordance with IEC 801-4. Testing is performed in accordance with the stipulations in DIN VDE 0660, Part 208 and IEC 947-5-2.

Voltage drop U_{d}

The voltage drop is measured across the active output of the inductive switching element when the output is in the "active energized" condition and when the rated operating current I_{e} flows.

Wire break safety

The EUCHNER proximity switches with wire break safety are designed such that on a wire break on any connection, the switch does not output a spurious signal.

Rated operating current I_{e}

The rated operating current is the nominal current which can load the inductive switching element in continuous operation.

Rated operating distance \mathbf{s}_{n}

The rated operating distance is a general variable used for measurement of operating distances. It does not take into account either the production tolerances or changes caused by external effects such as voltage and temperature.

Repeat accuracy \mathbf{R}

The repeat accuracy is the accuracy of the real operating distance s_{r} for two switching actions in succession within 8 hours at an operating temperature of $23 \pm 5^{\circ} \mathrm{C}$ and an operating voltage of $\mathrm{U}_{\mathrm{B}} \pm 5 \%$.

Reverse polarity protection

Protection against reverse polarization of the operating voltage.

[^0]: Gray figures on request

[^1]: Gray figures on request

[^2]: Gray figures on request

[^3]: Gray figures on request

