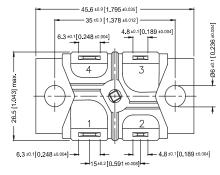
Series HPP 150 150 W Power Resistor according to VDE 0160 und UL 94 V-0

A Miba Group Company

EBG Resistors's HPP series is rated at 150 W mounted to a heat sink. The increased height of the package makes the resistor ideal in applications where creeping distance must meet the VDE 0160 and UL 94 V-0 standards.

Features

- multiple resistors in 1 package
- Easy mounting using already existing infrastructure
- Non-Inductive design
- ROHS compliant
- Materials in accordance with UL 94 V-0 and VDE 0160

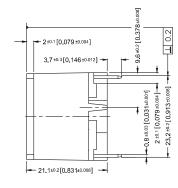

Technical Specifications

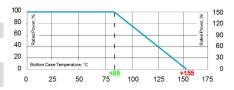
Resistance value	$1~\Omega \leq 1~M\Omega$ (a
Resistance tolerance	±1 % to ±10
Temperature coefficient	±250 ppm/°C lower TCR on sp
Power rating	up to 150 W a (see configuration
Maximum working voltage	500 ∨ (up to 1,000 V [
Voltage proof	5,000 V DC, 3
Insulations resistance	> 10 GΩ at 1,0
Insolation voltage between R1 & R2	500 V DC (1,0
Comparative Tracking Index (CTI)	standard > 20 (> 500 V on spe
Heat resistance to cooling plate	Rth < 0.47 K/
Capacitance/mass	45 pF (typical),
Working temperatur range	-55°C to +155
Mounting - torque for base plate (static)	1.3 Nm to 1.5
Weight	~38 g

Air distance contact to contact:

3	Contacts 1 and 2 resp. 3 and 4 - without fast-on-Plug: - with fast-on-Plug:	9.2 mm 8.2 mm
4	Contacts 1 and 4 resp. 2 and 3 - without fast-on-Plug: - with fast-on-Plug:	21.9 mm 20.9 mm
5	Contacts 2 resp. 3 and M5 - mounting screw with washer - without fast-on-Plug: - with fast-on-Plug:	16.3 mm 15.9 mm
6	Contacts 1 resp. 4 and M5 - mounting screw with washer - without fast-on-Plug: - with fast-on-Plug:	15.5 mm 15.0 mm

Dimensions in mm [inches]




$1~\Omega \leq 1~M\Omega$ (other values on special request)
±1 % to ±10 %
± 250 ppm/°C (at +85°C ref. to + 25°C) lower TCR on special request for limited ohmic values
up to 150 W at 85°C bottom case temperature (see configurations)
500 V (up to 1,000 V DC on special request = "S"-version)
5,000 V DC, 3,000 V AC
> 10 GΩ at 1,000 V DC
500 V DC (1,000 V DC on special request)
standard > 200 V (> 500 V on special request = "H"-version)
Rth < 0.47 K/W
45 pF (typical), measuring frequency 10 kHz
-55°C to +155°C
1.3 Nm to 1.5 Nm M5 screws
~38 a

Creeping distance:

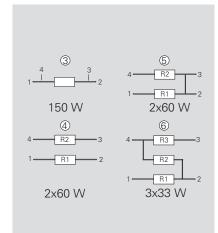
3	Contacts 1 and 2 resp. 3 and 4 - without fast-on-Plug: - with fast-on-Plug:	20.2 mm 19.0 mm
4	Contacts 1 and 4 resp. 2 and 3 - without fast-on-Plug:	27.4 mm

- with fast-on-Plug: 25.8 mm (5) Contacts 2 resp. 3 to base plate - without fast-on-Plug: 20.2 mm
 - without fast-on-Plug: 20.2 mm - with fast-on-Plug: 19.8 mm
- 6 Contacts 1 resp. 4 to base plate - without fast-on-Plug: 19.5 mm - with fast-on-Plug: 18.9 mm

Derating (thermal resist.) HPP-150: 2.14 W/K (0.47 K/W) (for conf. 3)

Best results can be reached by using a thermal transfer compound with a heat conductivity of at least 1 W/mK. The flatness of the cooling plate must be better than 0.05 mm overall. Surface roughness should not exceed 6.4 μm .

How to make an order


HPP-Configuration_Ohmic Value_Tolerance

For example:

HPP-5 2x2R 10% or HPP-6 3x8K 5%

Example for higher working voltage: HPP-4-S 2x10R 5%

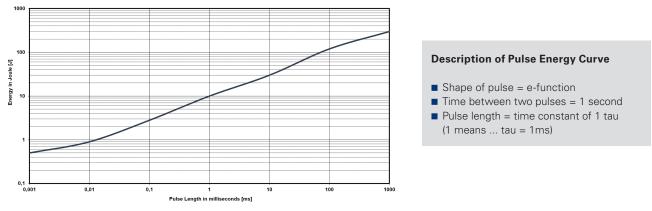
Configurations (P / package)

Version 5: ohmic value between contact 2 and 3 = $3m\Omega$

The above spec. sheet features our standard products. For further options please contact our local EBG representative or contact us directly.

Series HPP 150

2/2

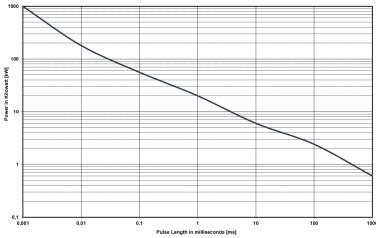

Pulse Energy Curve (typical rating for HPP 150)

Note: These energy values are reference values \rightarrow depending on ohmic value e.g. 1 Ω to 10 Ω and used resistive paste, a variation in max. energy load capability is possible

Test procedure

Every test resistor was mounted with thermal compound (0.9 W/mK) on a water cooled heatsink

- Constant inlet water temperature: +50°C
- The test time of each tested resistor: 10min.
- Break time between two pulses: 1sec.
- To determine good / defect parts the ohmic value was measured before and after tests: a change of tolerance of more than 0.1% means defect


Example

At 1 ms tau the HPP 150 with e.g. 1 Ω to 10 Ω can withstand an energy level of about 10 J, when the pulse pause time is \geq 1s

At a symmetrical frequency > 1 kHz at pulse length ≥ 10 μsec. the maximum applied pulse energy for HPP 150 is a result out of the nominal power 150 W divided by the operating frequency (at 85°C bottom case) (E = 150 W / F)

Pulse Power Curve (typical rating for HPP 150)

The power curve shows the max. possible power which can be applied for a certain duration. Referring to the same test procedure as described above.

Description of Pulse Power Curve

- Shape of pulse = e-function
- Time between two pulses = 1 second
- Pulse length = time constant of 1 tau (1 means ... tau = 1ms)

Example

For the time-constant of 1 ms you can apply about 20 kW max. (Pp = 2*E / T) \rightarrow , if the time between two such peaks is \geq 1s