The MTX 2000 series consists of high-quality, high-precision, high-power, high-voltage dividers for use in sophisticated resistor networks. These custom designs support a wide range of resistance value, tight voltage ratios, close tolerances and low TCRs.

Features

- up to 80 kV operating voltage
- up to 50 W operating power
- Non-Inductive design
- ROHS compliant

Technical Specifications

Resistance value	see model specifications below
Resistance tolerance	see model specifications below
Temperature coefficient	see model specifications below
Max. operating temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Dielectric strength	$>1,000 \mathrm{~V}\left(25^{\circ} \mathrm{C}, 75 \%\right.$ relative humidity)
Load life	$\Delta \mathrm{R} / \mathrm{R} 0.15$ \% max., 1,000 hours at rated power
Moisture resistance	$\Delta R / R 0.25$ \% max.
Thermal shock	$\Delta R / R 0.2$ \% max.
Encapsulation	standard coating: silicone conformal we recommend $2 x$ polyimide coating for use in oil and potted applications (ask for details)
Lead material	caps, nickel-plated
Torque	1.8 Nm to 2 Nm for M4, 3.8 Nm to 4 Nm for M8
Connection	standard version having no wire tap connection. Pre soldered wire connection available on special request
Weight	depending on model no. (ask for details)

Dimensions in mm

Model no.	L	B	$\boldsymbol{\varnothing}$	D	E	F	G	I	N
$\mathbf{2 0 0 0 . 2 3}$	156 ± 2	14.5 ± 0.2	13.5 ± 0.5	10 ± 0.2	8.5 ± 0.2	5 ± 0.5	$M 4$	1.0 ± 0.1	30.0 ± 1
$\mathbf{2 0 0 0 . 1 0 5}$	308 ± 2.5	31.8 ± 0.3	30.5 ± 0.5	18 ± 0.2	40 ± 2	7 ± 0.5	$M 8$	1.0 ± 0.1	30.0 ± 1

Model Specifications

Model no.	$\begin{gathered} \mathrm{P} \\ \text { Wattage } \\ 40^{\circ} \mathrm{C} \end{gathered}$	Voltage kV DC	TCR ratio	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$15 / 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
			Tolerance ratio	0.5 \% - 0.25\%	0.5 \% - 0.1\%	0.5 \% - 0.1 \%
2000.23	10	40	R1 + R2 Ratio	$\begin{gathered} 2 \mathrm{M} \Omega-2 \mathrm{G} \Omega \\ 1: 1000-1: 20000 \end{gathered}$	$\begin{gathered} 20 \mathrm{M} \Omega-1 \mathrm{G} \Omega \\ 1: 1000-1: 20000 \end{gathered}$	$\begin{aligned} & 20 \mathrm{M} \Omega-500 \mathrm{M} \Omega \\ & 1: 1000-1: 10000 \end{aligned}$
2000.105	50	80	R1 + R2 Ratio	$\begin{gathered} 20 \mathrm{M} \Omega-3 \mathrm{G} \Omega \\ 1: 1000-1: 20000 \end{gathered}$	$\begin{gathered} 20 \mathrm{M} \Omega-2 \mathrm{G} \Omega \\ 1: 1000-1: 20000 \end{gathered}$	$\begin{gathered} 20 \mathrm{M} \Omega-1 \mathrm{G} \Omega \\ 1: 1000-1: 10000 \end{gathered}$

How to make an order

Model no._Ohmic Value_abs. \& ratio Tolerance_abs. \& ratio TCR_ratio

For example:

MTX 2000.105 500M abs. tol. 2\% abs. TCR 25ppm, ratio tol. 1\%, ratio TCR 15ppm, 10.000:1

