

Turbine Flow Meters

Precision Series

DESCRIPTION

Cox Precision Turbine Flow Meters have unprecedented mechanical linearity, resulting in minimizing, or negating, temperature induced viscosity influence. Cox Precision Turbine Meters come with a variety of process fittings, sizes and options to accommodate the requirements of most applications while offering wide flow ranges.

Features	Benefits
Expanded mechanical linearity	Increased usable flow range with less sensitivity to fluid temperature/viscosity effect on the output.
Helical rotor design	Exceptional speed-of-response, with reduced pressure drop.
Comprehensive pickoff selection	Meets application requirements for temperature and electronic outputs.
High-Performance ceramic ball bearings	Ceramic bearings provide near-perfect roundness, higher Rockwell hardness and are lighter and more tolerant to temperature than 440C stainless steel bearings. They eliminate adhesive wear and perform well in non-lubricating liquids found in cryogenic fluids and water.
6-bladed rotor supports	Improved flow conditioning.
Facility with NIST traceable standards	Third party audits to ensure calibration uncertainty. Laboratory correlation to verify that all calibrators produce the same result.
A variety of end fittings	AN, NPT, hose barb, flange, high pressure, and special fittings to meet specific installation configurations.

APPLICATIONS

Cox Precision Flow Meters are the ideal solutions for standard and high pressure liquid flow applications in test and measurement and precision industrial processes, found in the automotive, aerospace and general industries.

CALIBRATIONS

Calibrations are accomplished by using various blends of solvent and oil to simulate actual fluid conditions. For varying process temperature conditions, multiple viscosity calibrations are used to develop a universal viscosity curve. UVC calibrations enable a flow computer to track temperature and compensate for fluid viscosity. Flow Dynamics tailors calibrations to replicate process conditions so the meter is characterized to provide the best attainable accuracy.

Calibrations are performed by our Flow Dynamics NVLAP (Lab Code 200668-0) accredited calibration facility located in Racine WI, which uses primary standard calibrators, offering uncertainties of $\pm\,0.05$ percent of reading with $\pm\,0.02$ percent repeatability. Users can be assured that Cox Precision Meters come with a best-in-class calibration, traceable to NIST standards.

NVLAP accreditation applies only to the Badger Meter Flow Dynamics calibration Lab, located in Racine, WI.

OPERATION AND PERFORMANCE

As a fluid passes through the meter, the velocity of the fluid provides rotational energy on the rotor. The rotor blades, passing through a magnetic or radio frequency field, generate pulses proportional to flow. Each pulse is transmitted to the meter electronics, where it amplifies the pulse output.

Outstanding mechanical linearity, up to 100:1, is achievable, depending on meter size. Paired with a flow processor, meter linearity improves from the standard \pm 0.50 percent to within \pm 0.1 percent of reading over the entire repeatable flow range, while providing fluid temperature viscosity compensation. Temperature effects on the meter bore diameter are compensated for by using thermal expansion coefficients, with Strouhal-Roshko equations, to provide a very accurate and repeatable volumetric flow rate.

SPECIFICATIONS

Repeatability	± 0.02% of reading	0.02% of reading						
Linearity	± 0.50% (± 0.1% with	flow processor)						
Calibrator Uncertainty	± 0.05% of reading	0.05% of reading						
Frequency Output	12001500 Hz	001500 Hz						
Response Time	23 ms (at 1.2 cSt)							
	Body	316 stainless steel						
Madaulalaad	Shafts	316 stainless steel						
Materials of Construction	Rotors	17-4 PH stainless steel						
Construction	Bearing							
	Other internal parts	301, 302, 303, 440C, 316/316L, PH 15-7 Mo and SV30 stainless steel						

NOTE: The flow data below represents two different pickoff types, radio frequency and magnetic. Radio frequency (RF) pickoffs extend the measurable linear flow range by eliminating magnetic induced drag. RF pickoffs require a power input, whereas magnetic pickoffs generate their own power to produce an output signal and typically, have greater tolerance to higher process temperatures.

U.S. Standard Flow Data

	Carrier (R	F) Linear Range ²		Non-	Linear Repeatable Rang	ge	A = 1 = 4 M = 14	F
Size	gpm (lpm)	lb/hr (kg/hr)	Linear Flow Ratio	gpm (lpm)	lb/hr (kg/hr)	Flow Ratio (Turndown)	Δp¹ at Max. Flow PSIG (g/cm²)	Freq. Output at Max. Flow
8-4	0.203.00 (0.7611.36)	761143 (34.47518.46)	15:1	0.053.00 (0.1911.36)	191143 (8.62518.46)	60:1	6.5 (0.46)	
8-6	0.306.00 (1.1422.71)	1142286 (51.711036.91)	20:1	0.066.00 (0.2322.71)	22.82286 (10.341036.91)		8.5 (0.60)	
8	0.409.50 (1.5135.96)	1523619 (68.951641.55)	24:1	0.099.50 (0.3435.96)	34.33619 (15.561641.55)	- 100:1	8.5 (0.60)	
10	0.5015.5 (1.8958.67)	1905905 (86.182678.46)	30:1	0.1615.5 (0.6158.67)	60.95905 (27.622678.46)	100.1	9.0 (0.63)	
12	1.0030.0 (3.78113.56)	38111,430 (172.825184.56)	30:1	0.3030.0 (1.13113.56)	11411,430 (51.715184.56)		9.0 (0.63)	1500 Hz
16	1.6065.0 (6.06246.05)	61024,765 (276.6911,233.2)	40:1	0.4565.0 (1.70246.05)	17124,765 (77.6711,233.2)		9.0 (0.63)	
20	1.9095.0 (7.19359.61)	72436,195 (328.4016,417.7)	50:1	0.6595.0 (2.46359.61)	24736,195 (112.0416,417.7)	150.1	8.5 (0.60)	
24	2.60155 (9.84586.74)	99059,055 (449.0626,786.9)	60:1	1.05155 (3.97586.74)	40059,055 (181.4426,786.9)	150:1	9.0 (0.60)	
32	3.10310 (11.731,173.48)	1181118,110 (535.6953,573.7)	100:1	2.10310 (7.951173.48)	800118,110 (362.8753,573.7)		9.0 (0.63)	

- 1. Pressure drop is based on using MIL-PRF-17024E, Type II at 77° F, with a specific gravity of 0.77.
- 2. Linear flow range was developed using 1.2 centistokes.

	Magneti	ic 10:1 Linear Range			Extended Range – Linear ²			
Size	gpm (lpm)	lb/hr (kg/hr)	Δp¹ at 10:1 PSID (kg/cm²)	K-Factor Pulses/ Gallon³ (Liter³)	gpm (lpm)	lb/hr (kg/hr)	Flow Ratio (Turndown)	Freq. at Min./Max. Output (Hz)
8-4	0.252.50 (0.959.46)	95952 (43.09431.82)	3.5 (0.25)	28,800 (7610)	0.253.00 (0.9511.36)	951143 (43.09518.46)	12:1	120/1440

	Magneti	ic 10:1 Linear Range			Extended Range – Linear ²			
Size	gpm (lpm)	lb/hr (kg/hr)	Δp¹ at 10:1 PSID (kg/cm²)	K-Factor Pulses/ Gallon³ (Liter³)	gpm (lpm)	lb/hr (kg/hr)	Flow Ratio (Turndown)	Freq. at Min./Max. Output (Hz)
8-6	0.505.00 (1.8918.93)	1901905 (86.18864.10)	4.5 (0.32)	14,400 (3805)	0.506.00 (1.8922.71)	1902286 (86.181036.91)	12:1	120/1440
8	0.757.50 (2.8428.39)	2852857 (129.271295.91)	6.0 (0.42)	9600 (2536)	0.609.00 (2.2734.07)	2293429 (103.871555.37)	15:1	96/1440
10	1.2512.5 (4.7347.32)	4764762 (215.912160.01)	5.0 (0.35)	5760 (1522)	1.0015.0 (3.7956.78)	3815715 (172.822592.28)	15:1	96/1440
12	2.5025.0 (9.4694.74)	9529525 (431,824320.47)	5.0 (0.35)	2800 (761)	1.5030.0 (5.68113.56)	57111,430 (259.015184.56)	20:1	72/1440
16	5.0050.0 (18.93189.27)	190519,050 (864.098640.93)	5.0 (0.35)	1440 (380)	2.5060.0 (9.46227.13)	95322,860 (432.2710,369.1)	24:1	60/1440
20	7.5075.0 (28.39283.91)	285728,575 (1295.9112,961.4)	5.5 (0.39)	960 (254)	3.0090.0 (11.36340.69)	114334,290 (518.4615,553.6)	30:1	48/1440
24	12.5125 (47.32473.18)	476247,625 (2160.0121,602.3)	6.0 (0.42)	576 (152)	5.00150 (18.93567.81)	190557,150 (864.0925,922.8)	30:1	48/1440
32	25.0250 (94.64946.35)	952595,250 (4320.4743,204.6)	6.5 (0.46)	288 (76)	6.20300 (23.471135.62)	2362114,300 (1071.3951,845.6)	48:1	30/1440

- 1. Pressure drop is based on using MIL-PRF-17024E, Type II at 77° F, with a specific gravity of 0.77.
- 2. Extended range is linear, with liquids up to 1.5 centistokes. Over 2.0 centistokes, output becomes non-linear but repeatable.
- 3. K-factor varies slightly from meter to meter.

Pressure Ratings for AN End Fittings

				Meter Body: 31			
Size	Pipe Size	10	100° F		0° F	500° F	
		bar	psig	bar	psig	bar	psig
8-4	0.25 in. (6.35 mm)	367	5330	299	4340	231	3350
8-6	0.37 in. (9.52 mm)	317	4600	245	3550	172	2500
8	0.50 in. (12.7 mm)	483	7000	388	5625	293	4250
10	0.62 in. (15.87 mm)	390	5660	319	4630	248	3600
12	0.75 in. (19.05 mm)	317	4600	245	3550	172	2500
16	1.00 in. (25.4 mm)	248	3600	193	2800	138	2000
20	1.25 in. (31.75 mm)	190	2760	157	2280	124	1800
24	1.50 in. (38.1 mm)	168	2430	135	1965	103	1500
32	2.00 in. (50.8 mm)	121	1760	97	1405	72	1050

Pressure Ratings for HP End Fittings

Size	Continuous		Size Continuous Proof		Bu	rst
Alleizos	psig	bar	psig	bar	psig	bar
All sizes	5000	345	7500	517	25,000	1724

Pressure Ratings for NPT End Fittings

Size	ISO/NPT Pipe Size	Female (Ma	ting Thread)
Size	in. (mm)	bar	psig
8-4	0.25 in. (6.35 mm)	408	5922
8-6	0.37 in. (9.52 mm)	324	4700
8	0.50 in. (12.7mm)	305	4418
10	0.75 in. (19.05 mm)	285	4136
12	0.75 in. (19.05 mm)	285	4136
16	1.00 in. (25.4 mm)	278	4042
20	1.25 in. (31.75 mm)	324	4700
24	1.50 in. (38.1 mm)	291	4230
32	2.00 in. (50.8 mm)	253	3666

NOTES:

- Pressure ratings listed are for temperatures up to 100° F (37.8° C).

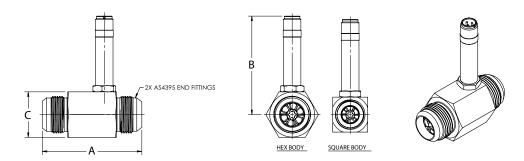
 Pressure rating is calculated with an allowable stress value of 20,000 psi for 316 SS per pressure piping code ASME B31.3.

 Chart is displaying safe working pressure, in accordance with power piping code ASME B31.1.

 It is recommended that the flow meter have "AN" end fittings and that the "NPT" transition be done on the far ends of the flow straighteners. This avoids a step in the flow stream next to the flow meter and produces an improved flow profile. If the NPT end fittings were selected for their high pressure rating, then the store is unavoidable and the calibration will account for the distorted profile. then the step is unavoidable and the calibration will account for the distorted profile.

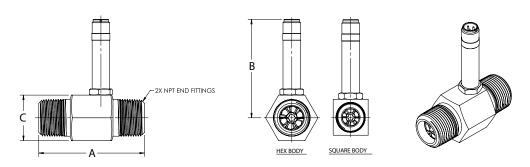
Pressure Ratings for Flange End Fittings (in accordance with ASME B16.5 Standards)

ANSI Flange	PSIG	Bar
150#	275	19
300#	720	50
600#	1440	99

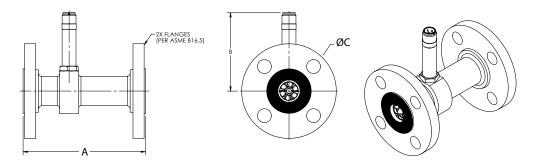

NOTES:

- 1. Specifications from maximum non-shock allowable working pressure in psig at 100° F (37.8° C) or less.
- 2. Stainless steel 316A-181 material.

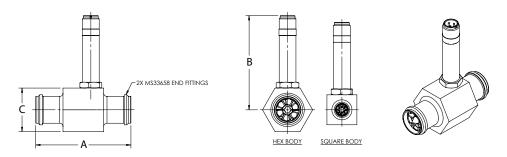
DIMENSIONS


Dimension B specifies the most common pickup type. Actual size may vary depending on pickup choice. Consult the factory for details.

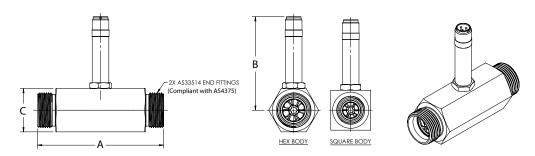
AN End Fitting


Size	End Fitting	Α	B (RF)	B (MAG)	С
8-4	0.50 in. (12.70 mm)	2.45 in. (62.23 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	1.12 in. (28.45 mm) Square Body
8-6	0.50 in. (12.70 mm)	2.45 in. (62.23 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	1.12 in. (28.45 mm) Square Body
8	0.50 in. (12.70 mm)	2.45 in. (62.23 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	1.12 in. (28.45 mm) Square Body
10	0.625 in. (15.88 mm)	2.72 in. (69.08 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	1.25 in. (31.75 mm) Square Body
12	0.75 in. (19.05 mm)	3.25 in. (82.55 mm)	3.40 in. (86.36 mm)	2.90 in. (73.66 mm)	1.25 in. (31.75 mm) Square Body
16	1.00 in. (25.40 mm)	3.56 in. (90.42 mm)	3.50 in. (88.90 mm)	3.00 in. (76.20 mm)	1.63 in. (41.40 mm) Hex Body
20	1.25 in. (31.75 mm)	4.06 in. (103.1 mm)	3.60 in. (91.44 mm)	3.10 in. (78.74 mm)	1.88 in. (47.75 mm) Hex Body
24	1.50 in. (38.10 mm)	4.59 in. (116.6 mm)	3.80 in. (96.52 mm)	3.30 in. (83.82 mm)	2.25 in. (57.15 mm) Hex Body
32	2.00 in. (50.80 mm)	6.06 in. (153.9 mm)	4.00 in. (101.6 mm)	3.50 in. (88.90 mm)	2.75 in. (69.85 mm) Hex Body

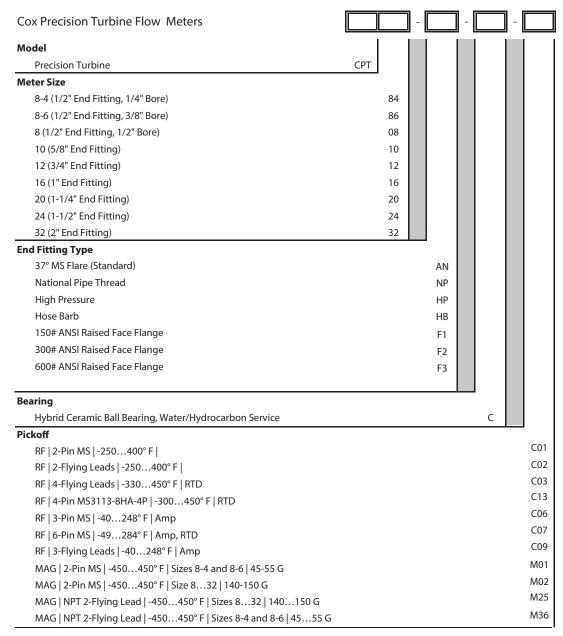
NPT End Fitting


Size	End Fitting	Α	B (RF)	B (MAG)	С
8-4	0.50 in. (12.70 mm)	2.70 in. (68.58 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	1.12 in. (28.45 mm) Square Body
8-6	0.50 in. (12.70 mm)	2.70 in. (68.58 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	1.12 in. (28.45 mm) Square Body
8	0.50 in. (12.70 mm)	2.70 in. (68.58 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	1.12 in. (28.45 mm) Square Body
10	0.75 in. (19.05 mm)	3.29 in. (83.57 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	1.25 in. (31.75 mm) Square Body
12	0.75 in. (19.05 mm)	3.29 in. (83.57 mm)	3.40 in. (86.36 mm)	2.90 in. (73.66 mm)	1.25 in. (31.75 mm) Square Body
16	1.00 in. (25.40 mm)	3.78 in. (96.01 mm)	3.50 in. (88.90 mm)	3.00 in. (76.20 mm)	1.63 in. (41.40 mm) Hex Body
20	1.25 in. (31.75 mm)	4.23in.(107.4 mm)	3.60 in. (91.44 mm)	3.10 in. (78.74 mm)	1.88 in. (47.75 mm) Hex Body
24	1.50 in. (38.10 mm)	4.67 in. (118.6 mm)	3.80 in. (96.52 mm)	3.30 in. (83.82 mm)	2.25 in. (57.15 mm) Hex Body
32	2.00 in. (50.80 mm)	5.89 in. (149.6 mm)	4.00 in. (101.6 mm)	3.50 in. (88.90 mm)	2.75 in. (69.85 mm) Hex Body

Flange End Fitting


Size	Α	B (RF)	B (MAG)	C—150# Flange	C—300# Flange	C—600# Flange
8-4	5.00 in. (127.0 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	3.50 in. (89 mm)	3.75 in. (95 mm)	3.75 in. (95 mm)
8-6	5.00 in. (127.0 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	3.50 in. (89 mm)	3.75 in. (95 mm)	3.75 in. (95 mm)
8	5.00 in. (127.0 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	3.50 in. (89 mm)	3.75 in. (95 mm)	3.75 in. (95 mm)
10	5.50 in. (139.7 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	3.50 in. (89 mm)	3.75 in. (95 mm)	3.75 in. (95 mm)
12	5.50 in. (139.7 mm)	3.40 in. (86.36 mm)	2.90 in. (73.66 mm)	3.88 in. (99 mm)	4.62 in. (117 mm)	4.62 in. (117 mm)
16	5.50 in. (139.7 mm)	3.50 in. (88.90 mm)	3.00 in. (76.20 mm)	4.25 in. (108 mm)	4.88 in. (124 mm)	4.88 in. (124 mm)
20	6.00 in. (152.4 mm)	3.60 in. (91.44 mm)	3.10 in. (78.74 mm)	4.62 in. (117 mm)	5.25 in. (133 mm)	5.25 in. (133 mm)
24	6.00 in. (152.4 mm)	3.80 in. (96.52 mm)	3.30 in. (83.82 mm)	5.00 in. (127 mm)	6.12 in. (155 mm)	6.12 in. (155 mm)
32	6.50 in. (165.1 mm)	4.00 in. (101.6 mm)	3.50 in. (88.90 mm)	6.00 in. (152 mm)	6.50 in. (165 mm)	6.50 in. (165 mm)

Hose Barb End Fitting


Size	End Fitting	Α	B (RF)	B (MAG)	С
8-4	0.50 in. (12.70 mm)	3.18 in. (80.77 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	1.12 in. (28.45 mm) Square body
8-6	0.50 in. (12.70 mm)	3.18 in. (80.77 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	1.12 in. (28.45 mm) Square body
8	0.50 in. (12.70 mm)	3.18 in. (80.77 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	1.12 in. (28.45 mm) Square body
10	0.625 in. (15.88 mm)	3.24 in. (82.30 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	1.25 in. (31.75 mm) Hex body
12	0.75 in. (19.05 mm)	3.25 in. (82.55 mm)	3.40 in. (86.36 mm)	2.90 in. (73.66 mm)	1.25 in. (31.75 mm) Hex body
16	1.00 in. (25.40 mm)	3.56 in. (90.42 mm)	3.50 in. (88.90 mm)	3.00 in. (76.20 mm)	1.63 in. (41.40 mm) Hex body
20	1.25 in. (31.75 mm)	4.50 in. (114.3 mm)	3.60 in. (91.44 mm)	3.10 in. (78.74 mm)	1.88 in. (47.75 mm) Hex body
24	1.50 in. (38.10 mm)	5.00 in. (127.0 mm)	3.80 in. (96.52 mm)	3.30 in. (83.82 mm)	2.25 in. (57.15 mm) Hex body
32	2.00 in. (50.80 mm)	6.50 in. (165.1 mm)	4.00 in. (101.6 mm)	3.50 in. (88.90 mm)	2.75 in. (69.85 mm) Hex body

High Pressure End Fitting

Size	End Fitting	Α	B (RF)	B (MAG)	С
8-4	0.50 in. (12.70 mm)	3.25 in. (82.55 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	1.12 in. (28.45 mm) Square body
8-6	0.50 in. (12.70 mm)	3.25 in. (82.55 mm)	3.20 in. (81.28 mm)	2.70 in. (68.58 mm)	1.12 in. (28.45 mm) Square body
8	0.50 in. (12.70 mm)	3.50 in. (88.90 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	1.12 in. (28.45 mm) Square body
10	0.625 in. (15.88 mm)	4.00 in. (101.6 mm)	3.30 in. (83.82 mm)	2.80 in. (71.12 mm)	1.25 in. (31.75 mm) Square body
12	0.75 in. (19.05 mm)	4.50 in. (114.3 mm)	3.40 in. (86.36 mm)	2.90 in. (73.66 mm)	1.50 in. (38.10 mm) Square body
16	1.00 in. (25.40 mm)	4.75 in. (120.7 mm)	3.50 in. (88.90 mm)	3.00 in. (76.20 mm)	1.63 in. (41.40 mm) Hex body
20	1.25 in. (31.75 mm)	5.50 in. (139.7 mm)	3.60 in. (91.44 mm)	3.10 in. (78.74 mm)	1.88 in. (47.75 mm) Hex body
24	1.50 in. (38.10 mm)	6.00 in. (152.4 mm)	3.80 in. (96.52 mm)	3.30 in. (83.82 mm)	2.25 in. (57.15 mm) Hex body
32	2.00 in. (50.80 mm)	7.00 in. (177.8 mm)	4.00 in. (101.6 mm)	3.50 in. (88.90 mm)	2.75 in. (69.85 mm) Hex body

METER MODEL NUMBER

NOTE: Meters are available with signal conditioners or flow computers, and can be calibrated using water, solvent or oil blends.

www.badgermeter.com